Производство нановолокон

Нановолокна можно производить, наполняя традиционные волокнообразующие полимеры отличающимися по конфигурации наночастицами различных веществ или путем выработки ультратонких (диаметром в рамках наноразмеров) волокон.

Наполненные наночастицами волокна начали производить с 1990 года. Такие волокна малоусадочны, имеют пониженную горючесть, повышенную прочность на разрыв и истирание и в зависимости от природы вводимых наночастиц могут приобретать другие защитные свойства, требующиеся человеку.

В качестве наполнителей волокон широко используют углеродные нанотрубки с одной или несколькими стенками. Волокна, наполненные нанотрубками, приобретают уникальные свойства – они в 6 раз прочнее стали и в 100 раз легче ее. Наполнение волокон углеродными наночастицами на 5-20% от массы придает им также сопоставимую с медью электропроводность и химическую устойчивость к действию многих реагентов.

Углеродные нанотрубки используются в качестве армирующих структур, блоков для получения материалов с высокими прочностными свойствами: экранов дисплеев, сенсоров, хранилищ жидкого топлива, воздушных зондов и т.д. Например, при наполнении углеродными нанотрубками поливинилспиртового волокна, получаемого по коагуляционной технологии прядения, оно становится в 120 раз выносливее, чем стальная проволока и в 17 раз легче, чем волокно Кевлар (самое известное и прочное арамидное химволокно, получаемое по традиционной технологии и используемое в бронежилетах). Подобные нановолокна уже сейчас начинают применять для производства взрывозащищающей одежды и одеял, защиты от электромагнитных излучений.

Очень ценные и полезные свойства химические волокна приобретают при наполнении их наночастицами глинозема. Наночастицы глинозема в виде мельчайших хлопьев обеспечивают высокую электро- и теплопроводность, химическую активность, защиту от УФ-излучения, огнезащиту и высокую механическую прочность. У полиамидных волокон, содержащих 5% наночастиц глинозема, на 40% повышается разрывная нагрузка и на 60% – прочность на изгиб. Такие волокна используют в производстве средств защиты от ударов, например защитных касок. Известно, что полипропиленовые волокна очень трудно окрашиваются, что существенно ограничивает область их применения в производстве материалов бытового назначения. Введение 15% наночастиц глинозема в структуру полипропиленовых волокон обеспечивает возможность крашения их различными классами красителей с получением окрасок глубоких тонов.

Интенсивно развиваются исследования и производство синтетических волокон, наполненных наночастицами оксидов металлов: ТiO2, Al2O3, ZnO, MgО.

Волокна приобретают следующие свойства:

- фотокаталитическую активность;

- УФ-защиту;

- антимикробные свойства;

- электропроводность;

- грязеотталкивающие свойства;

- фотоокислительную способность в различных химических и биологических условиях.

Еще одним интересным направлением в производстве нановолокон является придание им ячеистой, пористой структуры с наноразмерами пор. При этом достигается резкое снижение удельной массы (получение легких материалов), хорошая теплоизоляция, устойчивость к растрескиванию. Образующиеся нанопоры волокон могут быть заполнены различными жидкими, твердыми и даже газообразными веществами с различным функциональным назначением (медицина, ароматизация текстильных полотен, биологическая защита).

Компания Nano-Tex (США) успешно производит ткани, улучшенные с помощью нанотехнологий. Одна из таких тканей обеспечивает полную водонепроницаемость: благодаря изменению молекулярной структуры волокон, капли воды полностью скатываются с полотна, которое при этом «дышит». Помимо LeviStrauss, эти ткани использует в своей джинсовой одежде и элементах обуви компания Dockers.

Американская компания NanoSonic разработала уникальную технологию, позволяющую создавать материалы с невозможными в природе свойствами, в частности, листы полимера, гибкие и упругие, как резина, и проводящие ток, как металл. Новый продукт назвали Metall Rubber («металлизироканная резина»). Процесс производства этого продукта – электростатическая самосборка. Для его реализации компания создала специального робота, ускоряющего создание образцов, Така как наращивание детали из металлического каучука идет буквально по молекулам. Материал выдерживает многократное скручивание, нагрев до 200 С и агрессивные химические среды. Металлический каучук может найти применение в различных областях техники, от аэрокосмической отрасли до электроники, в том числе и в изготовлении текстиля для спецодежды.

Другой тип нановолокон – ультратонкие волокна, диаметр которых не превышает 100 нм. Эта тонина обеспечивает высокое значение удельной поверхности и, как следствие, высокое удельное содержание функциональных групп. Последнее обеспечивает хорошую сорбционную способность и каталитическую активность материалов из подобных волокон.

В Европе (Англия, Франция), США, Израиле и Японии параллельно идут интенсивные работы по созданию синтетических белковых волокон, имитирующих структуру паутины, имеющей непревзойденные физико-механические свойства. Используя для выработки подобного белка другие продуценты (микроорганизмы, растения), удалось получить полимерные белковые нановолокна толщиной около 100 нм. Мягкий и сверхпрочный «паучий шелк» сможет заменить жесткий и негибкий кевлар в бронежилетах. Области применения «паучьего шелка» разнообразны: это и хирургические нити, и невесомые и чрезвычайно прочные бронежилеты, и легкие удочки, и рыболовные снасти. Пока речь идет о малых партиях, но нанотехнологии развиваются столь бурно и стремительно, что промышленного выпуска изделий, изготовленных из «паучьего шелка», ждать недолго.








Дата добавления: 2016-03-20; просмотров: 1849;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.