Основные типы моделей

Из различных модификаций линейных возрастающих случайных функций изменения ОП Х(t) или ln X(t) наиболее часто процесс приближения объекта к отказам аппроксимируется следующими типами моделей:

а) веерной с ненулевым начальным рассеиванием (рис. 2a);

б) веерной с нулевым начальным рассеиванием (рис. 2б);

в) равномерной (рис. 2в).

   
   
   

 

Тип модели линейной функции Х(t) или ln X(t) зависит от числа случайных аргументов, определяющих ее случайный характер.

Веерная функция с ненулевым начальным рассеиванием описывается:

- для процесса X(t)

(10)

- для процесса ln X(t)

(11)

При t = 0 значения функций (12) и (13) представляют собой случайную величину, соответственно

(12)

и

(13)

 

причем V = V' . С учетом (12) и (13) модели (10), (11) легко представляются в виде (5) и (9). Случайный характер рассмотренной модели определяется двумя случайными аргументами: X0 или ln X0 - случайное начальное значение ОП или его логарифма; V или V' - случайная скорость изменения ОП или его логарифма.

Как следует из рис. 2a, все реализации веерной линейной случайной функции с ненулевым начальным рассеиванием проходят через общую неслучайную точку - "полюс".

Аргумент рассмотренной модели - случайная скорость изменения ОП (V) или логарифма ОП (V ) - имеет нормальное распределение с плотностью распределения соответственно:

 

(14)

 

(15)

 

Линейно зависящая от V случайная функция Х(t) (10) во всех сечениях будет распределена нормально с плотностью

и параметрами распределения:

 

(16)

 

- матожидание mXi = M{Xi};

- среднее квадратичное отклонение

- Численные характеристики - матожидание mx(t) и СКО Sx(t), самой случайной функции (10) выражаются через числовые характеристики mv и Sv случайной скорости:

 

(17)

 

(18)

 

Cлучайное начальное значение ОП X0 соответствует сечению функции Х(t) (10) при t =0, поэтому также имеет нормальное распределение по (16) при i = 0 с параметрами mx(t = 0) = mx0 и СКО Sx(t = 0) = Sx0 , определяемыми из (17) и (18) при t=0:

(19)

 

(20)

 

С учетом (19) и (20) выражения (17), (18) для числовых характеристик случайной функции (10) изменения ОП Х(t) примут вид:

 

(21)

 

(22)

 

В соответствие с (11) нормальное распределение скорости V' приводит к тому, что линейно зависящий от V' логарифм ОП ln X(t) = Y(t) также будет распределен нормально во всех - сечениях с плотностью распределения

 

(23)

 

Cам же ОП при этом будет иметь логарифмически нормальное распределение, плотность которого:

 

(24)

 

В выражениях (23), (24)

myi = M{lnXi},

- соответственно, матожидание и СКО логарифма ОП в сечениях случайной функции (11).

Матожидание my(t) и СКО Sy(t) линеаризованной путем логарифмирования функции (11) можно получить, используя числовые характеристики случайной скорости V : mv' и Sv'. Проводя аналогичные, как для функции (10), преобразования, получаем числовые характеристики модели (11) изменения логарифма ОП lnX(t) = Y(t):

 

(25)

 

(26)

 

Веерная функция с нулевым начальным рассеиванием является частным случаем модели (5), (9) и может быть получена из указанных выражений путем замены в них, соответственно, случайных начальных значений ОП Х0 или его логарифма lnX0 = Y0 некоторым неслучайным значением K0 или lnK0.

Поскольку веерная модель с ненулевым начальным рассеиванием является

частным случаем моделей (10), (11), то ее свойства определяются свойствами указанных моделей, поэтому числовые характеристики определяются (без вывода):

- для функции Х(t) = K0 + Vt изменения ОП из (21), (22)

 

(27)

 

(28)

 

- для функции Y(t) = lnX(t) = lnK0 + V't изменения ОП из (25), (26)

 

(29)

 

(30)

 

Равномерная функция также является частным случаем моделей (5), (9) и может быть получена из последних путем замены в них соответственно случайных скоростей изменения ОП V или его логарифма V' на неслучайные (постоянные) скорости или '.

Числовые характеристики случайных функций определяются (без вывода):

- для функции изменения ОП Х(t) = X0 + t из (21), (22)

(31)

 

(32)

 

- для функции Y(t) = lnX(t) = Y0 + 't из (25), (26)

 

(33)

 

(34)

 

Рассмотренные линейные модели удобны для аппроксимации случайных процессов изменения ОП тем, что позволяют характеризовать эти процессы ограниченным числом аргументов модели, для определения которых требуется минимальный объем экспериментальных данных.

 








Дата добавления: 2016-03-20; просмотров: 641;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.