Реакции второго порядка.

К реакциям второго порядка относятся реакции соединения ти­па A + B→C, реакции обмена A + B = C + D, а также реакции раз­ложения и др. Скорость реакции второго порядка определяется уравнением

2.13

где k — константа скорости реакции; а — число молей вещества А в начале реакции; b — число молей вещества В в начале реакции; х—число прореагировавших молей.

Здесь возможны два случая. Первый случай — это когда какое-то количество вещества А вступает в реакцию с эквивалентным количеством вещества В, т. е. когда а = b. И второй случай более сложный — это когда а ≠ b. Рассмотрим оба эти случая.

Первый случай (а= b).Поскольку исходные концентрации реа­гирующих веществ равны между собой, уравнение (2.13) примет вид

2.14

Разделяя переменные и производя интегрирование, получим

2.15

При t = 0 x = 0, откуда const =1/а. После подстановки этой величи­ны в уравнение (2.15) получим

2.16

Размерность константы скорости реакции второго порядка t-1C-1. Поэтому в отличие от константы скорости первого порядка числен­ное значение k зависит от того, в каких единицах выражены t и С. Если последняя выражена в кмоль/м3, а время в с, то k имеет раз­мерность [с-1·(кмоль/м3)-1].

Для реакций второго порядка большую роль играет число столк­новений, которые происходят в единицу времени между молекулами реагирующих веществ. Число столкновений, в свою очередь, пропор­ционально числу молекул в единице объема, т. е. концентрации. Таким образом, константа скорости, а следовательно, и скорость реакции второго порядка зависят от разбавления раствора.

Второй случай (а ≠ b). Если для реакции взяты неэквивалент­ные количества реагирующих веществ, скорость реакции выразится так:

2.17

После разделения переменных получим это уравнение в другом виде:

2.18

Выражение, стоящее в левой части уравнения (2.18), можно представить как

2.19

Поcле подстановки этого выражения в уравнение (2.13) получим

2.20

После интегрирования

2.21

Поскольку при t = 0 х = 0, постоянная интегрирования

2.22

Подставляя это выражение в уравнение (2.16), найдем

2.23

Это и есть кинетическое уравнение реакции второго порядка. При­мером подобной реакции может служить омыление эфиров щело­чами:

СН3COOC2Н5 + ОН- →СН3COO- + C2Н5ОН

Кинетика реакций второго порядка была детально изучена С. Г. Крапивиным еще в 1915 г.

Реакции третьего порядка встречаются очень редко и потому не имеет смысла рассматривать математический вывод их кинетиче­ского уравнения.

Существуют экспериментальные способы определения порядка реакции, основные из них:

избыточных концентраций,

подстановки в кинетическое уравнение реакций,

определение полупериода реакций,

графический.

 

Сложные реакции.

Сложными называются реакции, общее кинетическое уравнение которых в отличие от кинетического уравнения простых реакций со­держит несколько констант скоростей. К сложным реакциям отно­сятся обратимые, параллельные, последовательные, сопряженные, цепные и другие реакции. Теория всех этих реакций основана на по­ложении, что при протекании в системе одновременно нескольких реакций каждая из них проходит самостоятельно и к каждой из них в отдельности применимы уравнения кинетики простых реакций.

Параллельными реакциями называются реакции вида

т. е. при которых одни и те же исходные вещества, одновременно реагируя, образуют разные продукты. Примером подобного типа реакций является реакция разложения бертолетовой соли КСlO3, которая может идти в двух направлениях:

Примером последовательных реакций может служить гидролиз рафинозы трисахарида, который происходит через стадии образо­вания дисахарида, а последний образует уже моносахариды:

Расчет кинетики последовательных реакций в общем виде очень сложен и здесь не рассматривается. Отметим только, что если одна из ступеней обладает значительно меньшей скоростью, чем осталь­ные, то общая скорость реакции определяется скоростью именно этой ступени.

Сопряженными реакциями называются реакции, которые проте­кают по следующей схеме:

1)A + В→М

2)A + C→N

Реакция 1 может протекать самостоятельно, в то время как ре­акция 2 проходит при наличии реакции 1. Так, сульфат железа окисляется пероксидом водорода независимо от присутствия йодис­того водорода. Последний же в чистом виде пероксидом водорода не окисляется, но при окислении сульфата железа окисляется одно­временно с ним.

Обратимыми называются такие реакции, скорость которых рав­на разности между скоростями прямой и обратной реакции:

Примером обратимой реакции, может служить реакция образования сложного эфира

В этом случае скорость прямой реакции с течением времени убыва­ет, а скорость обратной реакции возрастает до тех пор, пока обе скорости не выравняются и не наступит так называемое состояние динамического равновесия. Константа равновесия данной реакции равна отношению констант скоростей прямой и обратной реак­ции.

Наряду с рассмотренными выше реакциями, механизм которых сравнительно прост, существуют также реакции, в которых взаимо­действие осуществляется более сложным путем. Примером подоб­ных реакций являются цепные реакции, которые имеют исключи­тельно большое значение в химической технологии, так как на них основаны такие процессы, как полимеризация, крекинг нефти, деле­ние атомного ядра.

К цепным реакциям относится большая группа реакций, проте­кающих путем образования цепи следующих друг за другом реак­ций, в которых участвуют активные частицы с ненасыщенными сво­бодными валентностями — так называемые свободные радикалы. Свободные радикалы образуются за счет дополнительного погло­щения энергии при разрыве связей в молекуле, при электрическом разряде, при поглощении электромагнитных колебаний, а также за счет других внешних источников энергии.

Сущность цепного механизма реакции заключается в том, что активная молекула, реагируя, порождает новую активную молеку­лу или реакционноспособную частицу (валентно-ненасыщенные сво­бодные атомы или радикалы). Процесс исчезновения и регенерации каждой активной частицы в дальнейшем циклически повторяется много раз и создает цепь превращений, совершающихся частью последовательно, а частью параллельно.

Впервые определение цепного механизма реакций через образо­вание активных центров было дано Н. А. Шиловым (1904). Чрез­вычайно большой вклад в дело изучения цепных реакций внес Н. Н. Семенов, которому за эти исследования была присуждена Нобелевская премия.

В настоящее время цепные реакции изучены настолько хорошо, что стало осуществимо регулирование скорости этих реакций. До­бавляя вещество, легко вступающее во взаимодействие с активны­ми центрами, можно значительно увеличить число обрывов цепей и тем самым затормозить (или же прекратить вовсе) цепную реак­цию.

Например, добавление всего лишь 0,01% NС1з (треххлористого азота) к смеси водорода и хлора (Н2 и С2), которые реагируют по типу цепных нарастающих реакций, уменьшает скорость обра­зования хлористого водорода в десятки тысяч раз.

Некоторые добавки увеличивают скорость цепных реакций. Так, добавление сравнительно малых количеств N0 в значитель­ной степени ускоряет цепные реакции окисления углеводородов. При этом удается значительно понизить температуру процесса окисления, что очень важно, так как сохраняются от сгорания цен­ные промежуточные продукты — уксусный и муравьиный альде­гиды.

На цепных химических реакциях основаны многие технологи­ческие процессы — синтез спиртов, кетонов, формалина, уксусной кислоты.

В последнее время исследования показали, что некоторые био­логические процессы также протекают по типу цепных реакций, в частности процессы биологического окисления.

 








Дата добавления: 2016-02-20; просмотров: 4589;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.