Модели представления знаний. Существуют два типа методов представления знаний: формальные (логические) и неформальные (семантические

 

Существуют два типа методов представления знаний: формальные (логические) и неформальные (семантические, реляционные) модели [12]. Эпистомологическая полнота представления знаний базируется на категориях: "истинно", "ложно", "сомнительно", "правдоподобно", "вероятно" и тому подобное.

В основе формальных моделей лежит строгая математическая теория. Логический вывод - основная операция в СИИ - в формальных системах строг и корректен, поскольку подчинен жестким аксиоматическим правилам.

Неформальная модель строится на основе учета конкретной предметной области и поэтому не обладает универсальностью, которая присуща моделям формальным. Вывод в неформальных системах во многом определяется самим исследователем, который и отвечает за его корректность.

В основе логических моделей лежит формальная система, задаваемая четверкой вида: M = <T, P, A, B>. Множество T есть множество базовых элементов различной природы, например слов из некоторого ограниченного словаря, деталей детского конструктора, входящих в состав некоторого набора и т.п. Важно, что для множества T существует некоторый способ определения принадлежности или непринадлежности произвольного элемента к этому множеству. Процедура такой проверки может быть любой, но за конечное число шагов она должна давать положительный или отрицательный ответ на вопрос, является ли x элементом множества T. Обозначим эту процедуру П(T).

Множество P есть множество синтаксических правил. С их помощью из элементов T образуют синтаксически правильные совокупности. Например, из слов ограниченного словаря строятся синтаксически правильные фразы, из деталей детского конструктора с помощью гаек и болтов собираются новые конструкции. Декларируется существование процедуры П(P), с помощью которой за конечное число шагов можно получить ответ на вопрос, является ли совокупность X синтаксически правильной.

В множестве синтаксически правильных совокупностей выделяется некоторое подмножество A. Элементы A называются аксиомами. Как и для других составляющих формальной системы, должна существовать процедура П(A), с помощью которой для любой синтаксически правильной совокупности можно получить ответ на вопрос о принадлежности ее к множеству A.

Множество B есть множество правил вывода. Применяя их к элементам A, можно получать новые синтаксически правильные совокупности, к которым снова можно применять правила из B. Так формируется множество выводимых в данной формальной системе совокупностей. Если имеется процедура П(B), с помощью которой можно определить для любой синтаксически правильной совокупности, является ли она выводимой, то соответствующая формальная система называется разрешимой. Это показывает, что именно правило вывода является наиболее сложной составляющей формальной системы.

Для знаний, входящих в базу знаний, можно считать, что множество A образуют все информационные единицы, которые введены в базу знаний извне, а с помощью правил вывода из них выводятся новые производные знания. Другими словами формальная система представляет собой генератор порождения новых знаний, образующих множество выводимых в данной системе знаний. Это свойство логических моделей позволяет хранить в базе лишь те знания, которые образуют множество A, а все остальные знания получать из них по правилам вывода.

В основе сетевых моделей лежит конструкция, названная семантической сетью. Сетевые модели формально можно задать в виде H = <I, C1, C2, ..., Cn, Г>. Здесь I есть множество информационных единиц; C1, C2, ..., Cn - множество типов связей между информационными единицами. Отображение Г задает между информационными единицами, входящими в I, связи из заданного набора типов связей.

В зависимости от типов связей, используемых в модели, различают классифицирующие сети, функциональные сети и сценарии. В классифицирующих сетях используются отношения структуризации. Такие сети позволяют в базах знаний вводить разные иерархические отношения между информационными единицами. Функциональные сети характеризуются наличием функциональных отношений. Их часто называют вычислительными моделями, так как они позволяют описывать процедуры "вычислений" одних информационных единиц через другие. В сценариях используются каузальные отношения, а также отношения типов "средство - результат", "орудие - действие" и т.п. Если в сетевой модели допускаются связи различного типа, то ее обычно называют семантической сетью.

Продукционные модели используют некоторые элементы логических и сетевых моделей. Из логических моделей заимствована идея правил вывода, которые здесь называются продукциями, а из сетевых моделей - описание знаний в виде семантической сети. В результате применения правил вывода к фрагментам сетевого описания происходит трансформация семантической сети за счет смены ее фрагментов, наращивания сети и исключения из нее ненужных фрагментов. Таким образом, в продукционных моделях процедурная информация явно выделена и описывается иными средствами, чем декларативная информация. Вместо логического вывода, характерного для логических моделей, в продукционных моделях появляется вывод на знаниях.

Фреймовые модели используют фиксированные жесткие структуры информационных единиц, которые называются протофреймами. Протофреймы состоят из слотов. Значением слота может быть практически что угодно (числа или математические соотношения, тексты на естественном языке или программы, правила вывода или ссылки на другие слоты данного фрейма или других фреймов). В качестве значения слота может выступать набор слотов более низкого уровня, что позволяет во фреймовых представлениях реализовать "принцип матрешки". При конкретизации фрейма ему и слотам присваиваются конкретные имена и происходит заполнение слотов. Таким образом, из протофреймов получаются фреймы - экземпляры. Переход от исходного протофрейма к фрейму - экземпляру может быть многошаговым, за счет постепенного уточнения значений слотов.

 

 








Дата добавления: 2016-02-16; просмотров: 1237;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.