БИОТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ 22 страница

Для осуществления химических процессов с помощью иммо­билизованных ферментов применяют колоночные, трубчатые, пла­стинчатые и танкерные реакторы разного объема и производи­тельности. Иммобилизованные ферментные системы функциони­руют в биореакторе в виде неподвижной фазы, через которую про­текает среда с субстратом, подлежащим химическому превраще­нию (гетерогенный катализ). В таких реакторах наряду с непрерыв­ным режимом используется и периодический. Для эффективного перемешивания и газообмена биореактор снабжают мешалкой. По­вреждающее действие мешалки на биокатализатор устраняют, зак­репляя определенным образом его гранулы. Например, в биореак­торе «корзиночного» типа мешалка вращается в полом цилиндре из сетчатой структуры (корзина), в ячейках которой закреплен им­мобилизованный фермент. Во внутреннем объеме трубчатых реак­торов рыхло расположены полые волокна, заполненные биоката­лизатором. Степень превращения субстрата в продукт (например, фумарата аммония в аспартат) в таких реакторах достигает 90 %.

4.6.4. Промышленные процессы с использованием иммобилизованных ферментов и клеток

Сочетание уникальных каталитических свойств энзимов с пре­имуществами иммобилизованных ферментов как гетерогенных катализаторов позволило создать новые промышленные техноло­гические процессы. Следует отметить, что все они относятся к производству пищевых продуктов и лекарственных препаратов.

В настоящее время в мире разработаны следующие крупномас­штабные производства с использованием иммобилизованных фер­ментов и клеток:

1. Получение глюкозофруктозных сиропов.

2. Получение оптически активных L-аминокислот из их раце­мических смесей.

3. Синтез L-аспарагиновой кислоты из фумарата аммония.

4. Синтез L-аланина из L-аспарагиновой кислоты.

5. Синтез L-яблочной кислоты из фумаровой кислоты.

6. Получение безлактозного молока.

7. Получение Сахаров из молочной сыворотки.

8. Получение 6-аминопенициллановой кислоты.

В качестве примера рассмотрим некоторые из них.

Получение глюкозофруктозных сиропов. Фруктоза (фруктовый, плодовый или медовый сахар) — важнейший в физиологическом и технологическом отношении природный моносахарид. Превра-. щаясь в печени и кишечнике млекопитающих в глюкозу, фрукто-: за включается в пластический и энергетический обмен клетки. Она в 2,5 раза слаще глюкозы и в 1,7 раза слаще тростникового сахара (сахароза), благодаря чему фруктоза — менее калорийный пище­вой продукт по сравнению с последними. В отличие от глюкозы обмен фруктозы не контролируется инсулином, поэтому фрукто­вый сахар может потребляться больными диабетом. Фруктоза прак­тически не вызывает кариеса зубов. В смеси с глюкозой фруктоза не кристаллизуется, поэтому широко используется для производ­ства кондитерских изделий.

Объем производства сахарозы за последние 100 лет возрос в 15 раз и составляет, по разным оценкам, 30 — 40 кг в год на человека. Однако, несмотря на явные преимущества использования фрук­тозы, первая промышленная установка для превращения глюко­зы во фруктозу с помощью иммобилизованной глюкоизомеразы была запущена лишь в 1973 г. (компания «Клинтон Корн», США). Исходным сырьем для этого процесса служит глюкоза, которую получают при гидролизе кукурузного или картофельного крахма­ла в присутствии минеральных кислот. Для конструирования про­мышленного биокатализатора глюкозоизомеразу сорбируют на пористых неорганических носителях или ионообменных смолах. Во многих случаях используют иммобилизованные клетки разно­го происхождения {Aspergillus niger, A. oryzae, Streptomyces phaeochro- mogenes, S. olivaceus, S. venezuelae). Коммерческие препараты им­мобилизованной глюкоизомеразы имеют вид гранул, шариков, волокон или аморфной массы. Наиболее эффективными биореак­торами для получения фруктозы признаны аппараты колонного типа высотой около 5 м, в которых по сравнению с реакторами перемешивания расход фермента минимален. Производительность такого реактора варьирует от 600 до 9000 кг глюкозофруктозного сиропа на 1 кг иммобилизованного фермента в зависимости от чистоты исходного сырья, а время полуинактивации катализато­ра — 20 — 50 суток. Возникающий в результате каталитического процесса глюкозофруктозный сироп содержит 42 —45 % фрукто­зы, около 51 % глюкозы, небольшое количество олигосахаридов и по сладости соответствует инвертному сахару, получаемому при гидролизе сахарозы. Эти смеси постепенно вытесняют инвертиро­ванный сахар в промышленности и медицине. Глюкозофруктоз- ную смесь широко применяют для производства тонизирующих напитков, консервированных фруктов, кондитерских изделий, хле­ба, мороженого и пр. Экономические расчеты показали, что про­изводство глюкозофруктозных сиропов с использованием иммо­билизованной глюкоизомеразы в 1,5 раза выгоднее получения са­харозы из сахарной свеклы по традиционной технологии. Благо­даря этому обстоятельству производство глюкозофруктозных си­ропов в мире постоянно растет. Так, в 1980 г. 10 % потребляемого населением Японии сахара заменено на глюкозофруктозную смесь. В США эта доля к началу нового столетия достигла 40 %.

Получение L-аминокислот из их рацемических смесей. Наряду с микробиологическими способами важное значение имеют химические методы промышленного получения природных амино­кислот, в том числе незаменимых. Однако в результате химических реакций, используемых для синтеза аминокислот, содержащих асим­метрические атомы углерода, с одинаковой скоростью образуются как D-, так и L-стереоизомеры, т.е. всегда возникает рацемическая смесь. Между тем в живых клетках обмену подвергаются лишь L-аминокислоты. Разделение рацемических смесей на составляющие их оптические изомеры (представляющее труднейшую задачу) яви­лось первым промышленным процессом с использованием иммо­билизованных ферментов. Этот процесс был осуществлен в Японии в 1969 г. (компания «Танабе Сейяку») с помощью аминоацилазы, иммобилизованной на ДЕАЕ-целлюлозе. В качестве исходных соедине­ний в данном превращении используют N-ацилированные произ­водные D-,L-аминокислот, получаемые с помощью химического синтеза. Вследствие своей стереоспецифичности аминоацилаза гидро-" лизует лишь N-auwi-L-стереоизомер, отщепляя от него ацильный'. радикал, в результате чего растворимость образующейся L-амишИ! кислоты резко возрастает и ее легко можно отделить от своего анти-1 пода физико-химическими методами. При нагревании оставшаяся! N-ацил-D-аминокислота рацемизируется, т.е. превращается в ис->1 ходную смесь, которая вновь подвергается воздействию фермента:

_ + Н20 СООН СООН

2R СН—СООН Аминоацилаза I I

I ----------------------- р » HjN-C-H + H-C-NH-CO-R 1

NH-CO-R, -R,COOH 2 i I

R R

М-ацил-0-,Ь-амино- L-аминокислота Ы-ацил-О-амино-

кислота кислота

+_______________________________________ I

Рацемизация при нагревании

Аминоацилаза строго специфична к структуре только ациль- ной части субстрата, поэтому одна и та же установка с иммоби­лизованным ферментом используется для получения различных аминокислот, в том числе L-валина, L-метионина, L-фенилала- нина и L-триптофана. Время полуинактивации иммобилизован­ного энзима составляет 65 суток; на японских предприятиях он используется без замены более 8 лет и обеспечивает снижение стоимости производства аминокислот на 40 % по сравнению с тех­нологией, где применяются свободные молекулы фермента.

Получение L-аспарагиновой кислоты. Аспарагиновая кислота широко употребляется в качестве пищевой добавки (подсласти­тель и подкислитель). Первая в мире промышленная установка для синтеза L-аспарагиновой кислоты из получаемого химичес­ким путем фумарата аммония была запущена в 1973 г. в Японии (фирма «Танабе Сейяку»); в ней использованы иммобилизован­ные в полиакриламидном геле клетки кишечной палочки Е. coli, содержащие аспартат-аммиак-лиазу:


Изложенное далеко не исчерпывает перечень химических про­изводств, базирующихся на использовании иммобилизованных ферментов и клеток. Список ряда биотехнологических процессов с применением иммобилизованных биокатализаторов, разрабо­танных на уровне промышленных и опытных установок, пред­ставлен в табл. 4.3.

Таблица 4.3

Применение иммобилизованных ферментов

Название и шифр фермента Источник фермента, способ иммобилизации Биотехнологический процесс
Ацилнейтра- минат-9-фос- фатсинтаза (КФ 4.1.3.20) Фермент Е. coli. Включение в полиакриламидный гель Синтез сиаловых кислот
Р-Галактози- даза (КФЗ.2.1.23) Фермент Kluyvemmyces fragilis, К lactis, Aspergillus niger, A. oryzae. Включение в нити ацетата целлюлозы, полиакрил­амидный гель; адсорбция на фенолформальдегидной смоле, модифицированных керамике и кремнеземе Гидролиз лактозы; получение безлак- тозного молока, глю­козы и галактозы
Глюкоамилаза (КФ 3.2.1.33) Фермент Aspergillus niger. Хелати- рование целлюлозой, стеклом, нейлоном; ковалентное связыва­ние с клетками В. subtilis, Е. coli Превращение олиго- сахаридов в глюкозу
З-Кетостероид- Д' дегидроге- наза Клетки Mycobacterium globiformis. Включение в полиакриламид­ный гель Трансформация гид­рокортизона в пред- низолон
Пероксидаза (КФ 1.11.1.7) Фермент из хрена, сополимери- зованный с тирозином и вклю­ченный в гель альгината Окисление фенола в сточных водах
Протеазы (КФ 3.4) Ферменты В. subtilis, В. licheni- formis, B.thermoproteolyticus, Mucor pusillus. Включение в полиак­риламидный гель, силикагель; хелатирование на поверхности стекла, микроорганизмов Получение белковых гидролизатов
Пуллуназа (КФЗ.2.1.9) Клетки Aureobacidium pullulan, Arthrobacter. Ковалентное связы­вание с биогелем Расщепление а-1,6- гликозидных связей в амилопектине. Полу­чение декстринов

 

Название и шифр фермента Источник фермента, способ иммобилизации Биотехнологический процесс
Термолизин (КФ 3.4.24.4) Клетки Bacillus thermoproteofyti- cus, включенные в полиуретан Реакция конденса­ции L-аспарагино­вой кислоты и мети­лового эфира L-фе- нилаланина с обра­зованием пептидно­го заменителя сахаро­зы аспартама (в 100 раз слаще сахарозы)
Тирозинфе- ноллиаза (КФ 4.1.99.2) Клетки Erwinia herbicola, Е. intermedia. Включение в полиакриламидный гель Синтез тирозина из ПВК, NH3h фенола; L-серина и фенола. Синтез ДОФА из ПВК, NH3 и пирокатехина
Триптофаназа (КФ 4.1.99.1) Клетки Е coli. Включение в нити триацетата целлюлозы и гель каррагинана Получение триптофа­на из L-серина и индо­ла

 

4.6.5. Ферментативная конверсия целлюлозы в глюкозу

В связи со значительным исчерпанием углеводородного сырь насущной проблемой для дальнейшего развития биотехнологи, становится освоение новых сырьевых источников. По существу №- исчерпаемый и одновременно возобновляемый источник сырь представляет собой растительная биомасса (многолетние расте ния, вторичные продукты и отходы их промышленной и сельскс хозяйственной переработки), основным компонентом которой слу жит целлюлоза (клетчатка). Ежегодно на Земле создается окол 100 млрд т целлюлозы.

Благодаря плотной упаковке линейно построенных полигль козидных цепей целлюлоза устойчива к действию большинств растворителей и химических агентов, в том числе сильных кислс В природе существуют так называемые целлюлолитические орг низмы (бактерии, плесневые грибы) и некоторые виды насек» мых, содержащие полиферментные комплексы целлюлаз, обе печивающие гидролиз клетчатки до глюкозы. Целлюлазный ком» леке ферментов включает эндо-1,4-(3-глюканазу, экзоцеллоби гидролазы, целлобиазы и экзо-1,4-р-глюкогидролазу, механи| действия которых на клетчатку оказался одинаковым для всех Щ следованных целлюлазных комплексов независимо от их npoi хождения. Попадая на целлюлозосодержащие материалы, мик|. организмы выделяют целлюлазы, которые, сорбируясь (иммобш


зуясь) на субстрате, постепенно расщепляют его до глюкозы. В пос­ледние годы разработаны технологические схемы для непрерывно­го ферментативного гидролиза целлюлозы на уровне опытных ус­тановок. Процесс протекает в противоточных реакторах колонного типа, плотно заполненных целлюлозой. Расчеты показывают, что перевод процесса на промышленный уровень обеспечивает полу­чение 24 т глюкозы в сутки. Дальнейшее совершенствование эф­фективности метода конверсии целлюлозосодержащего сырья в глюкозу и далее в этанол и углеводороды позволит создать альтер­нативные пути получения ценных моносахаридов и жидкого топлива из возобновляемого сырья, а также решить еще одну важную про­блему — утилизацию экологически опасных отходов производства.

4.6.6. Биосенсоры на основе иммобилизованных ферментов

Высокая эффективность биологических катализаторов и спе­цифичность их действия делают ферменты идеальными реагента­ми для аналитической химии. Благодаря этим особенностям с по­мощью ферментов обнаруживаются вещества при предельно низ­кой концентрации в присутствии множества других соединений. К настоящему времени созданы искусственные аналитические системы различных конструкций (биосенсоры, датчики, фермент­ные электроды, проточные анализаторы), содержащие иммоби­лизованные ферменты и клетки и предназначенные для автома­тического детектирования продуктов энзиматического превраще­ния. Например, если использовать иммобилизованную глюкозо- оксидазу, то концентрацию окисляемой кислородом глюкозы определяют, регистрируя количество выделившегося в ходе реак­ции пероксида водорода:

Н Н ОНН

^ ' J, J, J, ^О Глкжозооксидаза

нон2с—с—с—с—с—сСн +02 + Н20 --------------------------------------

ОН ОНН ОН

Н Н ОНН

—- НОН2С—с—с—с—с—ct + н2о2 I I I I ^он ОН ОНН он

В зависимости от концентрации анализируемых веществ выби­рают тот или иной способ их детекции. Так, количественное со­держание пероксида водорода (ммоль/л) можно определить од­ним из нижеследующих методов:

Полярографический (накопление Н202)................................................ 0,1

Колориметрический (Н202 + О-дианизи-

пероксидаза „ nimi дин................................................ окрашенный продукт) 0,1-10 J

Люминесцентный (Н202 + люминол —ь-

хемилюминесцентный продукт, хмакс = 425 нм)....................... 0,1 • 10~6

Начаты разработки новых поколений биодатчиков на базе аф­финных взаимодействий (биосродства) типа фермент-ингибитор, антитело-антиген, агонист (антагонист)-клеточный рецептор, а также на основе полупроводниковых структур и мезоэлектричес- кого эффекта. Последние два биодатчика дают возможность созда­вать сенсоры, чувствительные к газам, что имеет существенное значение для создания роботов, реагирующих на изменения внеш­них воздействий.

Технологические варианты реакторов с иммобилизованными ферментами весьма разнообразны — колонки, трубки, полые во­локна и пр. С их помощью на практике определяют концентрацию широкого спектра соединений — глюкозы, аминокислот, моче­вины, пенициллина, АТФ, НАДН, ФМН, стероидов, триглице- ридов, желчных кислот и многих других (J.Aylott, R. Kopelman, 2000). Так, американскими исследователями сконструирован мик­родатчик на основе глюкозооксидазы и рутениевого красителя, иммобилизованных в полиакриламидной матрице с использова­нием субмикронных оптических волокон. Микробиосенсор, не вы­зывая повреждений, может быть введен в клетку и даже в отдель­ные ее компартменты для измерения содержания в них глюкозы и кислорода. Предложены датчики на базе иммунодетекции для про­ведения экспресс-анализов на присутствие производных диокси­на (Nomura et. al., 2000) и оценки содержания биогенных аминов (с помощью моноаминооксидазы) в пищевых продуктах в связи с процессами их старения. Для определения мочевины ферментным электродом требуется всего 30 с.

Биосенсоры на основе иммобилизованных ферментов помога­ют выполнять десятки быстрых и точных анализов при диагности­ке заболеваний, контролировать содержание вредных веществ (ин­сектицидов, пестицидов, удобрений) в пищевых продуктах и в воздухе. Биосенсоры нашли применение в решении аналитичес­ких задач в химической и микробиологической промышленнос­ти, а также в научных исследованиях.

4.6.7. Иммобилизованные ферменты в медицине

Иммобилизованные ферменты имеют огромное значение для медицины. В частности, большой рынок сбыта занимают тромбо- литические ферменты, предназначенные для борьбы с сердечно­сосудистыми заболеваниями. Так, в отечественную клиническую практику внедрен препарат «стрептодеказа», содержащий стреп- токиназу — активатор предшественника протеиназы плазмина, предотвращающий образование тромба в кровеносной системе.


Ферменты, разрушающие некоторые незаменимые аминокисло­ты (например, аспарагиназа), используют для борьбы со злокаче­ственным ростом опухолей. Протеолитические ферменты (трип­син, химотрипсин, субтилизин, коллагеназа), иммобилизован­ные на волокнистых материалах (целлюлоза, полиамидные волок­на, декстран и др.), применяют для эффективного лечения ран, язв, ожогов, абсцессов, а их белковые ингибиторы — в замести­тельной терапии для лечения эмфиземы и панкреатитов.

Исключительно важны с практической точки зрения работы, посвященные направленному транспорту лекарственных веществ. В этом отношении особенно выгодны инкапсулированные фер­менты типа искусственной клетки. Так, микрокапсулы, стенки которых представлены оболочкой эритроцита («тень эритроцита»), а их содержимое заполнено ферментом аспарагиназой, перено­сятся кровотоком к зонам скопления аспарагина и поэтому при­меняются для лечения аспарагинзависимых опухолей, в частно­сти саркомы. Колонки, заполненные микрокапсулами с фермен­том, используют для диализа в аппарате «искусственная почка», которая работает в 100 раз эффективнее обычного аппарата.

Таким образом, использование иммобилизованных ферментов во многих жизненно важных отраслях народного хозяйства стано­вится все более массовым. Выгодное сочетание избирательности и эффективности с долговечностью и стабильностью иммобилизо­ванных ферментов в корне меняет химическое производство, спо­собы добывания сырья, способствует созданию новых биотехно­логических процессов и методов терапии, совершенствует меди­цинскую диагностику, анализ, органический синтез и оказывает огромное влияние на образ жизни человека.


Глава 5

ОСНОВЫ ГЕНЕТИЧЕСКОЙ ИНЖЕНЕРИИ

5.1. ИСТОРИЯ РАЗВИТИЯ ГЕНЕТИЧЕСКОЙ ИНЖЕНЕРИИ

Генетическая инженерия — ветвь молекулярной генетики, ис­следующая возможности и способы создания лабораторным пу­тем (in vitro) генетических структур и наследственно измененных организмов, т.е. создания искусственных генетических программ, с помощью которых направленно конструируются молекулярные генетические системы вне организма с последующим их введени­ем в живой организм. Обычно употребляют два названия данного научного направления — генетическая инженерия и генная инже­нерия, являющиеся как бы синонимами. Однако их смысловое со­держание неодинаково: генетическую инженерию связывают с ге­нетикой, а генная имеет отношение только к генам. Кроме того, генетическая инженерия точнее раскрывает содержание дисцип­лины — создание генетических программ, основная задача кото­рых — создание in vitro молекул ДНК посредством соединения фрагментов ДНК, которые в естественных условиях чаще не со­четаются благодаря межвидовым барьерам (рекомбинантные ДНК). Молекула рекомбинантной ДНК представляет собой соединенные в бесклеточной системе два компонента: вектор, обеспечивающий механизм репликации и экспрессии, и фрагмент клонируемой («чу­жеродной») ДНК, содержащий интересующие исследователя гене­тические элементы. Согласно определению национальных институ­тов здоровья США, «рекомбинантными ДНК называют молекулы ДНК, полученные вне живой клетки путем соединения природных или синтетических фрагментов ДНК с молекулами, способными реплицироваться в клетке». Генетическая инженерия возникла на стыке многих биологических дисциплин: молекулярной генетики, энзимологии, биохимии нуклеиновых кислот и др. Первая реком- бинантная ДНК получена в 1972 г. (П. Бергом с сотр.) и была со­ставлена из фрагмента ДНК обезьяньего вируса ОВ40 и бакте­риофага X dvgal с галактозным опероном Е. coli. Формально 1972 г. следует считать датой рождения генетической инженерии.

Генетическая инженерия имеет яркую историю благодаря тому общественному резонансу, который она вызвала с самых первых своих шагов. Начало этим событиям положило послание участни­ков Гордоновской конференции (1973) президиуму АН США, в котором говорилось о возможной опасности технологий рекомби­нантных ДНК для здоровья человека. Возможные блага генети­ческой инженерии признавались с самого начала, но разногла­сия по данной проблеме не затихли и сейчас. В табл. 5.1 перечисле­ны основные этапы становления и развития генетической инже­нерии.

Таблица 5.1 Основные этапы развития генетической инженерии
Год Автор Содержание открытия
Ф. Мишер Выделена ДНК из ядер клеток гноя
Д. Уотсон, Ф. Крик Сконструирована модель двой­ной спирали ДНК на основании результатов рентгеноструктурно- го анализа ДНК
А. Мармур и П. Доти Открыто явление ренатурации ДНК и установлены точность и специфичность реакции гибри­дизации нуклеиновых кислот
В. Арбер Впервые получены сведения о ферментах рестрикции ДНК
М. Мезельсон и Е. Юань Выделена первая рестриктаза
М.Ниренберг, С.Очоа, Г. Корана Расшифрован генетический код
М. Геллерт Открыта ДНК-лигаза
1972-1973 Г. Бойер, С. Коэн, П. Берг (Стендфордский университет и Кали­форнийский универ­ситет в Сан-Франциско) Разработана технология клони­рования ДНК
1975-1977 Ф. Сэнгер, Р. Баррел, А. Максам, В. Гилберт Разработаны методы быстрого определения нуклеотидной последовательности

Год Автор Содержание открытия
Г. Корана Синтезирован ген тирозиновой супрессорной РНК
1981-1982 Р. Пальмитер, Р. Бринс- тер, А. Спрэдлинг, Г. Рубин Получена трансгенная мышь. Получены трансгенные экзем­пляры дрозофилы
Л. К. Эрнст, Г. Брем, И. В. Прокофьев Получены трансгенные овцы с геном химозина

 

5.2. БИОТЕХНОЛОГИЯ РЕКОМБИНАНТНЫХ ДНК

Технология рекомбинантных ДНК включает набор как новы; методов, так и заимствованных из других дисциплин, в частности из генетики микроорганизмов. Эти методы существенно расширя­ют возможности генетических исследований. Используя техноло­гию рекомбинантных ДНК, получают даже минорные клеточные белки в больших количествах и проводят тонкие биохимические исследования структуры и функций белков, а также осуществля­ют детальный химический анализ генетического материала. К наи­более важным методам биотехнологии рекомбинантных ДНК сле­дует отнести следующие:

1. Специфическое расщепление ДНК рестрикцирующими нук- леазами, что в значительной степени ускоряет выделение различи ных генов и манипуляции с ними.

2. Быстрое секвенирование всех нуклеотидов в очищенном фраг­менте ДНК, позволяющее определить точные границы гена и ко? дируемую им аминокислотную последовательность полипептида;,

3. Гибридизация нуклеиновых кислот, позволяющая с большой точностью выявить специфические нуклеотидные последователь! ности на основе их способности связывать комплементарные ос; нования. I

4. Клонирование ДНК, суть которого сводится к введению ДНК| фрагмента в самореплицирующийся генетический аппарат (плазмИ ду или вирус), который используют для трансформации бактери" Бактериальная клетка после трансформации способна воспрои" водить этот фрагмент во многих миллионах идентичных копий.

5. Генетическая инженерия, позволяющая получать модифиЩ рованные версии генов и затем внедрять их в клетки или органи' мы.

Технология рекомбинантных ДНК оказала существенное вс действие на всю клеточную биологию, позволяя решать такие 31

'V

дачи, как определение строения и функций не только белков, но и индивидуальных доменов, а также расшифровывать механизмы регуляции экспрессии генов, получать многие белки, участвую­щие в регуляции обменных процессов, клеточной пролиферации и развитии организма.

Расщепление ДНК в специфических участках нуклеотидных пос­ледовательностей осуществляется особыми ферментами — рест- рикцирующими нуклеазами, способными разрушить чужерод­ную ДНК. Все ферменты условно можно разделить на следующие группы:

1) используемые для получения фрагментов ДНК;

2) синтезирующие фрагменты ДНК на матрице РНК;

3) соединяющие фрагменты ДНК;

4) позволяющие осуществить изменение структуры концов фрагментов ДНК;

5) применяемые для приготовления гибридизационных проб.

Каждый фермент, способный разрушить чужеродную ДНК,

опознает в ней специфическую последовательность из 4 —6 ну­клеотидов. Соответствующие последовательности в геноме бакте­рий замаскированы метилированием остатков с помощью метилаз.

Согласно номенклатуре, предло­женной Х.Смитом и Д.Натансоном, название рестриктазы складывается из трех букв: первая обозначает ро­довое название, две последующие — первые буквы вида. Например, фер­мент из Е. coli обозначают как Есо или из Haemophilus influenzae — Hin и т.д. Типовая или штаммовая иденти­фикация следует за родовидовой, на­пример, EcoRI или Hindll и т.д. В на­стоящее время различные фирмы вы­пускают более 100 разнообразных ферментов, опознающих различные последовательности нуклеотидов. Для каждого конкретного фермента они различаются по длине, первичной структуре и способу разрыва молеку­лы ДНК. Подавляющее большинство ферментов разрывает только двуни- тевую ДНК с образованием серии Рис 5л участки узнавания Фрагментов, называемых рестрикци- дНК тремя реСтриктазами из онными (или рестриктами; с тупы- Haemophilus parainfluenzae МИ либо липкими концами (рис. 5.1). (Hpal); Escherichia coli (EcoRI)

Hpal А-А-С-3'
5'—G—Т-Т--
3'-C-A-A-|-T-T-G -5' Расщепление
EcoRI А—А—Т-Т-С-3'
5-G-j-
3'—С—Т—Т—A—A--G— 5' Расщепление
Hindlll •A—G—С—Т— Т— 3'
5'- А
3'~Т—Т—С—G—А+А—5' Расщепление

Многие рестриктазы вносят разры- и Haemophilus influenzae вы в две цепи ДНК со смещением на (Hindlll)
несколько нуклеотидов и образованием на концах фрагменте! коротких одноцепочечных участков. Они способны образовывать комплементарные пары оснований с любым другим одноцепо- чечным участком, полученным с помощью того же фермента (лип­кие концы). Липкие концы позволяют легко соединить два любы;, фрагмента ДНК в одно целое. Полученный фрагмент ДНК (любо­го происхождения) можно встроить в очищенную ДНК плазми­ды или бактериального вируса.

Сравнение размеров фрагментов ДНК после обработки соот­ветствующего участка генома набором рестриктаз позволяет по­строить рестрикционную карту, отражающую расположение оп­ределенной последовательности нуклеотидов в данном участке Сравнением таких карт можно оценить степень гомологии межд\ отдельными генами (участками) без определения их нуклеотид ной последовательности. Рестрикционные карты важны для кло­нирования ДНК, решения эволюционных и филогенетических за­дач.

Для успешного решения задач генетической инженерии оченж важно быстро секвенировать (определить последовательность нук| леотидов) любые очищенные фрагменты ДНК. В настоящее врем$ объем информации о последовательностях ДНК столь велик, чт<| для хранения и анализа данных о фрагментах, целых геномах не*» обходимы новые технологии и компьютерная техника. «

Исходный фрагмент ДНК, меченный 32Р по 5'-концу


 

 








Дата добавления: 2016-02-09; просмотров: 1288;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.029 сек.