БИОТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ 21 страница

Для успешного выделения ферментов из клеточного содержи­мого необходимо очень тонкое измельчение исходного материала вплоть до разрушения субклеточных структур: лизосом, митохон­дрий, ядер и др., которые имеют в своем составе многие индиви­дуальные ферменты. Для этого используют специальные мельни­цы и гомогенизаторы, а также ультразвук, метод попеременного замораживания и оттаивания ткани. Для высвобождения фермен­тов из мембранных структур клетки к гомогенатам добавляют не­большие количества детергентов (твин, тритон Х-100) или обра­батывают их энзимами — лизоцимом, целлюлазой, лецитиназой С. Особое внимание при выделении ферментов уделяют проведению всех операций в условиях, исключающих денатурацию белка (ней­тральные значения рН, стабилизирующие добавки в виде белков, солей и специальных соединений).

Пример, иллюстрирующий получение частично очищенного пре­парата (3-галактозидазы из мутанта Е. coli, представлен на рис. 4.2. Схема очистки включает отделение клеток микроорганизма по


Рис. 4.2. Технологическая схема непрерывного получения Р-галактози- дазы из клеток Е. coli ML308 (по P.P.Gray et al., 1972): 1 — стерилизатор среды; 2— ферментер; 3, 7 — центрифуги; 4 — гомогенизатор; 5 — теплообменник; 6 — смесительные камеры; 8 — ротационный вакуум-фильтр

 

выходе их из ферментера от культуральной жидкости посредством центрифугирования и последующее разрушение клеток в гомоге­низаторе высокого давления. Для освобождения белков от нуклеи­новых кислот полученный гомогенат обрабатывают сульфатом марганца до конечной концентрации этой соли в смеси, равной 0,05 М. Осадок нуклеиновых кислот отделяется с помощью рота­ционной вакуум-фильтрации, а в образовавшийся фильтрат до­бавляют сульфат аммония до 45 % от его насыщения. Возникший осадок белков, содержащий Р-галактозидазу, собирают с помо­щью центрифугирования или вакуум-фильтрации. Вся процедура очистки энзима от момента подачи бактерий в систему до момен­та получения осадка р-галактозидазы занимает всего 1 ч.

В зависимости от свойств выделяемого фермента и сопутствую­щих ему балластных веществ при получении очищенных препара­тов ферментов комбинируют различные приемы и методы (рис. 4.3), такие, как термическое фракционирование, осаждение органи­ческими растворителями, солями и тяжелыми металлами, фильт­рация на молекулярных ситах, ионообменная хроматография, элек­трофорез, изоэлектрофокусирование.

На заключительных этапах очистки часто используют аффин­ную хроматографию (биоспецифическая хроматография, хромато­графия по сродству), которая основана на способности фермен­тов избирательно связывать те или иные лиганды — субстраты,


Фильтрование Концентрирование Осаждение

Вспомогательный Ацетон, спирт,

Источники фермента
Сушка
Стандартизация, стабилизация
Экстракция Вода
Железы животных Растительные ткани__

фильтрующий (NH4)2S04

£
___ i

Фильтр- пресс
Растительный экстракт

материал

Вакуумный концентратор


 

 


рСолодиль- ник
Обратный] осмос
Вращающийся [барабан___
Ротационный вакуум-фильтр
Стабилизаторы, консерванты

Рост микроорганизмов

Вода

Поверхностная [культура

-| Экстрактор

Вспомогательный фильтрующий, материал | f)*|

Емкостный |биореактор

Инертные г ингредиенты J>

Смеситель

\ I

L_J__ I

Стабилизирующие соли, инертные ингредиенты
Смеситель

Центрифуга

Лотковая сушилка

I Распылительная _ сушилка

Шаровая мельница или молотковая дробилка

Электрофорез, хроматография


 

 


Сушилка


 

 


Сухой неочи- щенный фермент

Разбавленный раствор очищен-1 ного фермента

Концентрирован­ный раствор очищенного фермента

Фракционированный фермент (для специ­альных целей)

Стандартизо­ванный фермент (сухой)


 

 


оо

Рис. 4.3. Схема получения ферментных препаратов из культур микроорганизмов (по Дж. Бейли, Д. Оллис, 1989)


коферменты, конкурентные ингибиторы, аллостерические эффек­торы и т.п. Такое связывание весьма специфично (Кх Ю-4 М), что позволяет выделить тот или иной энзим из множества других бел­ков. Например, из желудочного сока человека методом одноэтап- ной аффинной хроматографии выделена кислая липаза, исполь­зующаяся в заместительной терапии при заболеваниях печени.

Для синтеза аффинного сорбента, соответствующего специфич­ности данного фермента, лиганд (субстрат или его аналог) при­соединяют к инертной матрице (макропористые гидрофильные гели, синтетические полимеры, неорганические носители). Для уменьшения пространственных трудностей при взаимодействии фермента с матрицей лиганд присоединяют к носителю через про­межуточное звено (вставку, ножку, спейсер). Присоединение ли- гандов к поперечносшитой агарозе — сефарозе обычно проводят, активируя ее бромцианом (см. с. 91). Связывание с сефарозой, ак­тивированной бромцианом, л-амино-бензилянтарной кислотой, используемой в качестве лиганда, обеспечивает взаимодействие сорбента с каталитическим центром только карбоксипептидаз бла­годаря сходству лиганда с субстратами карбоксипептидазы:

—со—NH-CH-COOH НО-СО-СН-СН-СООН Матрица—О—С—NH II О С-концевой остаток Аффинный сорбент с лигандом. фенилаланина в субстрате Бензилянтарная кислота изостерична карбоксипептидазы структуре остатка фенилаланина

 

Сорбенты, содержащие цибакрон голубой и некоторые другие красители антрахинонового ряда, используют для аффинной хромато­графии НАД-зависимых дегидрогеназ, а носители, имеющие цикло- пептидный антибиотик грамицидин, — для протеолитических фер­ментов:

Афинный сорбент, содержащий антрахиноновый краситель


Таблица 4.2 Схема очистки глюкоамилазы из культуры Endomycopsis ssp. 20-9 (по И.М.Грачевой, 1987)
Стадия очистки Объем, мл Общее количество белка, мг Глюкоамилазная активность Амилол итическая активность Трансглю- козидазная активность
общая, ед. (Е) удельная, Е/мг выход, % степень очистки общая, ед.(Е) выход, %
Исходная культураль- ная жидкость 13 600 28 500 2,1 100,0 1,0 Глюкоза, изомальтоза
Отделение биомассы, концентрирование, отделение балласта 11 100 25 600 2,3 90,0 89,0 То же
Осаждение ацетоном, растворение в воде 19 800 9,7 69,5 4,6 11,3
Ультрафильтрация 11,3 64,0 5,4 9,10
Хроматография на ДЭАЭ-целлюлозе 15 000 50,4 52,5 24,5 30,0 0,35
Ультрафильтрация 54,0 47,2 25,7 27,5 0,29
Гель-фильтрирование через акрилекс П-100 76,5 40,5 36,5 22,8 0,24
Обессоливание, лиофилизация 0,1 77,0 25,0 37,0 14,3 0,15

В процессе выделения повышается доля фермента в массе тоталь­ных белков, т.е. увеличивается его удельная активность. В табл. 4.2 представлены данные, характеризующие процедуру очистки от сопутствующих ферментов и балластных белков глюкоамилазы из культуры Endomycopsis ssp. 20-9. Анализ таблицы показывает, что чистота глюкоамилазы в препарате возросла в 37 раз и в получен­ном препарате отсутствует активность двух ферментов углеводно­го обмена — гликозилтрансферазы и а-амилазы.

В производственных условиях активность получаемого фермент­ного препарата оценивается количеством субстрата, преобразо­ванного 1 мг (1кг) препарата при оптимальных условиях за 1 мин, и измеряется в Е/мг, моль/мг или каталах/кг белка.

Очищенные ферментные препараты хранят при низкой темпе­ратуре (до -80 °С). Для стабилизации ферментов в их препараты добавляют коферменты и субстраты. Ферментные препараты для промышленного применения стабилизируют, добавляя глицерин, моносахариды, дисахариды (глюкоза, сахароза, лактоза), HS-co- единения (цистеин, глутатион, меркаптоэтанол, дитиотреитол и др.), отдельные аминокислоты, желатину и другие белки-напол­нители.

Существенно, что из 2003 включенных в список известных в настоящее время ферментов более 1500 выделено и в той или иной степени очищено; это служит не только базой для изучения физи­ко-химических основ ферментативного катализа, но и фундамен­том для совершенствования химического производства и промыш­ленности.

4.5. ИНЖЕНЕРНАЯ ЭНЗИМОЛОГИЯ, ЕЕ ЗАДАЧИ

Развитие прикладной энзимологии долгое время сдерживалось дороговизной чистых ферментных препаратов, неустойчивостью их при хранении и невозможностью многократного использова­ния. Принципиально новые перспективы открылись перед при­кладной энзимологией в 60-е годы XX в. в результате появления на стыке химии и биологии новой отрасли — инженерной энзи­мологии. Ее задачи заключаются в развитии прогрессивных мето­дов выделения ферментов, их стабилизации и иммобилизации; конструировании катализаторов с нужными свойствами и разра­ботке научных основ их применения.

В частности, методами белковой инженерии, сущность кото­рых состоит в изменении первичной структуры природной моле­кулы фермента посредством химической модификации самого; энзима или его гена, удается принципиально трансформировать структуру активного центра и его функцию, модулировать суб­стратную специфичность и физико-химические свойства фермен­та. Так, замена остатка глутамина-102 в молекуле лактатдегидро- геназы на аргинин превратила фермент в высокоактивную малат- дегидрогеназу. Описанным способом получены термостабильные формы лизоцима Т-4 и субтилизина (каталитическая константа субтилизина изменена в 100 раз), созданы гибридные формы фер­ментной системы, ценной в иммуноферментном анализе, сочета­ющие в себе свойства Р-галактозидазы и Р-галактокиназы.

Многие проблемы технологии синтеза органических соедине­ний, пищевой и медицинской промышленности, мониторинга че­ловека и окружающей среды, защиты окружающей среды, энер­гетики не могут быть решены без использования методов совре­менной инженерной энзимологии.

Важным этапом развития инженерной энзимологии стала раз­работка способов получения и использования иммобилизованных ферментов.

4.6. ИММОБИЛИЗОВАННЫЕ ФЕРМЕНТЫ

Иммобилизованными ферментами называются ферменты, ис­кусственно связанные с нерастворимым носителем, но сохраня­ющие свои каталитические свойства.

Еще в 1916 г. Дж. Нельсон и Е.Гриффин показали, что сахаро­за, сорбированная на угле, сохраняла свою каталитическую ак­тивность, но лишь в 1953 г. Н. Грубхофер и Д. Шлейт впервые осу­ществили ковалентные связывания амилазы, пепсина, РНКазы и карбоксипептидазы с нерастворимым носителем.

В 1971 г. на первой конференции по инженерной энзимологии был узаконен термин «иммобилизованные ферменты». Однако в понятие «иммобилизация» в настоящее время вкладывают более широкий смысл, чем связывание на нерастворимом носителе, а именно — полное или частичное ограничение свободы движения белковых молекул.

Иммобилизованные ферменты имеют ряд преимуществ в сравнении со свободными молекулами. Прежде всего такие фер­менты, представляя собой гетерогенные катализаторы, легко от­деляются от реакционной среды, могут использоваться многократ­но и обеспечивают непрерывность каталитического процесса. Кроме того, иммобилизация ведет к изменению свойств фермента: суб­стратной специфичности, устойчивости, зависимости активнос­ти от параметров среды. Иммобилизованные ферменты долговеч­ны и в тысячи и десятки тысяч раз стабильнее свободных энзимов. Так, происходящая при температуре 65 °С термоинактивация лак- татдегидрогеназы, иммобилизованной в 60%-м полиакриламид- ном геле, замедлена в 3600 раз по сравнению с нативным фер­ментом. Все перечисленное обеспечивает высокую экономичность, эффективность и конкурентоспособность технологий, использу­ющих иммобилизованные ферменты.

4.6.1. Носители для иммобилизации ферментов

По Дж. Порату (1974), идеальные материалы, используемые для иммобилизации ферментов, должны обладать следующими основ­ными свойствами: нерастворимостью; высокой химической и био­логической стойкостью; значительной гидрофильностью; доста­точной проницаемостью как для ферментов, так и для кофермен- тов, субстратов и продуктов реакции; способностью носителя легко активироваться (переходить в реакционноспособную форму).

Естественно, ни один из используемых в настоящее время в качестве носителя материал не отвечает полностью перечислен­ным требованиям. Тем не менее существует широкий набор носи­телей, пригодных для иммобилизации определенных энзимов в конкретных условиях.

В зависимости от природы носители делятся на органические и неорганические материалы.

Органические полимерные носители. Иммобилизация многих ферментов осуществляется на полимерных носителях органичес­кой природы. Существующие органические полимерные носите­ли можно разделить на два класса: природные и синтетические полимерные носители. В свою очередь, каждый из классов орга­нических полимерных носителей подразделяется на группы в за­висимости от их строения. Среди природных полимеров выделя­ют белковые, полисахаридные и липидные носители, а среди синтетических — полиметиленовые, полиамидные и полиэфир­ные.

К преимуществам природных носителей следует отнести их доступность, полифункциональность и гидрофильность, а к недо­статкам — биодеградируемость и достаточно высокую стоимость.

Из полисахаридов для иммобилизации наиболее часто исполь­зуют целлюлозу, декстран, агарозу и их производные. Для прида­ния химической устойчивости линейные цепи целлюлозы и дек- страна поперечно сшивают эпихлоргидрином. В полученные сет­чатые структуры довольно легко вводят различные ионогенные группировки. Химической модификацией крахмала сшивающими агентами (формальдегид, глиоксаль, глутаровый альдегид) син­тезирован новый носитель — губчатый крахмал, обладающий по­вышенной устойчивостью к гликозидазам.

Из природных аминосахаридов в качестве носителей для им­мобилизации применяют хитин, который в значительных коли­чествах накапливается в виде отходов в процессе промышленной переработки крабов и креветок. Хитин химически стоек и имеет хорошо выраженную пористую структуру.

Среди белков практическое применение в качестве носителей нашли структурные протеины, такие, как кератин, фиброин, коллаген и продукт переработки коллагена — желатина. Эти белки широко распространены в природе, поэтому доступны в значи­тельных количествах, дешевы и имеют большое число функцио­нальных групп для связывания фермента. Белки способны к био­деградации, что очень важно при конструировании иммобилизо­ванных ферментов для медицинских целей. К недостаткам белков как носителей в этом случае следует отнести их высокую иммуно- генность.

Синтетические полимерные носители. Благодаря разнообразию и доступности материалы этой группы широко используются как носители для иммобилизации. К ним относятся полимеры на ос­нове стирола, акриловой кислоты, поливинилового спирта; по­лиамидные и полиуретановые полимеры. Большинство синтети­ческих полимерных носителей обладают механической прочнос­тью, а при образовании обеспечивают возможность варьирования в широких пределах величины пор, введения различных функци­ональных групп. Некоторые синтетические полимеры могут быть произведены в различных физических формах (трубы, волокна, гранулы). Все эти свойства полезны для разных способов иммоби­лизации ферментов.

Носители неорганической природы. В качестве носителей наи­более часто применяют материалы из стекла, глины, керамики, графитовой сажи, силикагеля, а также силохромы, оксиды ме­таллов. Их можно подвергать химической модификации, для чего носители покрывают пленкой оксидов алюминия, титана, гаф­ния, циркония или обрабатывают органическими полимерами. Основное преимущество неорганических носителей — легкость регенерации. Подобно синтетическим полимерам неорганическим носителям можно придать любую форму и получать их с любой степенью пористости.

Итак, к настоящему времени создано огромное число разнооб­разных носителей для иммобилизации ферментов. Однако для каж­дого индивидуального фермента, используемого в конкретном тех­нологическом процессе, необходимо подбирать оптимальные ва­рианты как носителя, так и условий и способов иммобилизации.

4.6.2. Методы иммобилизации ферментов

Существуют два принципиально различных метода иммобили­зации ферментов: без возникновения ковалентных связей между ферментом и носителем (физические методы иммобилизации) и с образованием ковалентной связи между ними (химические ме­тоды иммобилизации). Каждый из этих методов осуществляется разными способами (рис. 4.4).


К недостаткам адсорбционного метода следует отнести невы­сокую прочность связывания фермента с носителем. При измене­нии условий иммобилизации могут происходить десорбция фер­мента, его потеря и загрязнение продуктов реакции. Существенно повысить прочность связывания фермента с носителем может предварительная его модификация (обработка ионами металлов, полифункциональными агентами — полимерами, белками, гид­рофобными соединениями, монослоем липида и пр.). Иногда, наоборот, модификации подвергается молекула исходного фер­мента, однако зачастую это ведет к снижению его активности.

Иммобилизация ферментов путем включения в гель. Способ иммобилизации ферментов путем включения в трехмерную струк­туру полимерного геля широко распространен благодаря своей простоте и уникальности. Метод применим для иммобилизации не только индивидуальных ферментов, но и мультиэнзимных ком­плексов и даже интактных клеток. Иммобилизацию ферментов в геле осуществляют двумя способами. В первом случае фермент вво­дят в водный раствор мономера, а затем проводят полимериза­цию, в результате которой возникает пространственная структура полимерного геля с включенными в его ячейки молекулами фер­мента. Во втором случае фермент вносят в раствор уже готового полимера, который впоследствии переводят в гелеобразное со­стояние. Для первого варианта используют гели полиакриламида, поливинилового спирта, поливинилпирролидона, силикагеля, для второго — гели крахмала, агар-агара, каррагинана, агарозы, фос­фата кальция.

Иммобилизация ферментов в гелях обеспечивает равномерное распределение энзима в объеме носителя. Большинство гелевых матриц обладает высокой механической, химической, тепловой и биологической стойкостью и обеспечивает возможность много­кратного использования фермента, включенного в его структуру. Однако метод непригоден для иммобилизации ферментов, дей­ствующих на водонерастворимые субстраты.

Иммобилизация ферментов в полупроницаемые структуры. Сущ­ность этого способа иммобилизации заключается в отделении вод­ного раствора фермента от водного раствора субстрата с помо­щью полупроницаемой мембраны, пропускающей низкомолеку­лярные молекулы субстратов и кофакторов, но задерживающей большие молекулы фермента. Разработано несколько модифика­ций этого метода, из которых интерес представляет микрокапсу- лирование и включение ферментов в липосомы.

Первый способ предложен Т.Чангом в 1964 г. и состоит в том, что водный раствор фермента включается внутрь замкнутой мик­рокапсулы, стенки которой образованы полупроницаемым поли­мером. Один из механизмов возникновения мембраны на поверх­ности водных микрокапсул фермента заключается в реакции меж­фазной поликонденсации двух соединений, одно из которых ра-] створено в водной, а другое — в органической фазе. Примером может служить образование на поверхности раздела фаз микро­капсулы, получаемой путем поликонденсации гексаметилендиа- мина-1,6 (водная фаза) и галогенангидрида себациновой кисло­ты (органическая фаза):

H2N-(CH2)6-NH2 + СЮС— (СН2)8—COCI

—Н1_1

—- -HN-(CH2)6-NH - СО—(СН2)8—СО-

Размер получаемых капсул составляет десятки или сотни мик­рометров, а толщина мембраны — сотые доли микрометра.

Достоинства метода микрокапсулирования — простота, уни­версальность, возможность многократного использования натив- ного фермента (фермент может быть отделен от непрореагировав-; шего субстрата и продуктов реакции процедурой простого фильт-, рования). Особенно существенно, что методом микрокапсулиро­вания могут быть иммобилизованы не только индивидуальные ферменты, но и мультиэнзимные комплексы, целые клетки и отдельные фрагменты клеток. К недостаткам метода следует отне­сти невозможность инкапсулированных ферментов осуществлять превращения высокомолекулярных субстратов.

Близким к инкапсулированию методом иммобилизации мож­но считать включение водных растворов ферментов в липосомы, представляющие собой сферические или ламеллярные системы двойных липидных бислоев. Впервые данный способ был приме­нен для иммобилизации ферментов Дж. Вайсманом и Дж. Сессом в 1970 г. Для получения липосом из растворов липида (чаще всего лецитина) упаривают органический растворитель. Оставшуюся тонкую пленку липидов диспергируют в водном растворе, содер­жащем фермент. В процессе диспергирования происходит само­сборка бислойных липидных структур липосомы, содержащий включенный раствор фермента. }

Ферменты, иммобилизованные путем включения в структур^ липосом, используют преимущественно в медицинских и науч-' ных целях, ибо значительная часть ферментов в клетке локализо­вана в составе липидного матрикса биологических мембран, по-*! этому изучение липосом имеет большое значение для пониманий закономерностей процессов жизнедеятельности в клетке. I

Другие приемы иммобилизации ферментов, основанные физических методах, менее распространены по сравнению с рас-1 смотренными выше. |

Химические методы иммобилизации ферментов. Иммобилиза! ция ферментов путем образования новых ковалентных связей междя ферментом и носителем — наиболее массовый способ получений промышленных биокатализаторов. |

90 |

О + о—о + ^^^

Носитель Вставка Фермент Иммобилизованный

фермент

Рис. 4.5. Схема иммобилизации фермента химическим методом (по Н.В.Березину с сотр., 1987)

В отличие от физических методов этот способ иммобилизации обеспечивает прочную и необратимую связь фермента с носите­лем и часто сопровождается стабилизацией молекулы энзима. Од­нако расположение фермента относительно носителя на расстоя­нии одной ковалентной связи создает стерические трудности в осуществлении каталитического процесса. Фермент отделяют от носителя с помощью вставки (сшивка, спейсер), в роли которой чаще всего выступают бифункциональные и полифункциональ­ные агенты (бромциан, гидразин, сульфурилхлорид, глутаровый диальдегид и др.). Например, для выведения галактозилтрансфе- разы из микроокружения носителя между ним и ферментом встав­ляют последовательность —СН2—NH—(СН2)5—СО—. В этом случае структура иммобилизованного фермента включает носитель, встав­ку и фермент, соединенные между собой ковалентными связями (рис. 4.5).

Принципиально важно, чтобы в иммобилизации фермента уча­ствовали функциональные группы, не существенные для его ка­талитической функции. Так, гликопротеины обычно присоединя­ют к носителю через углеводную, а не через белковую часть моле­кулы фермента.

Число методических приемов, разработанных для осуществле­ния ковалентной иммобилизации ферментов, исключительно ве­лико. Все методы химической иммобилизации классифицируют в зависимости от природы реакционной группы носителя, вступа­ющей во взаимодействие с молекулой фермента. Ниже представ­лен ряд примеров, иллюстрирующих некоторые способы хими­ческой иммобилизации ферментов.

Иммобилизация ферментов на носителях, обладающих гидроксо- группами. Наиболее распространенным методом образования ко­валентной связи между ферментом и полисахаридным носителем или синтетическим диольным соединением является бромциано- вый метод, который был предложен Р.Аксеном, Дж.Поратом и С. Эрнбаком в 1967 г. При обработке носителя бромцианом возни­кают реакционноспособные цианаты и имидокарбонаты, кото­рые при взаимодействии с нуклеофильными аминогруппами фер­мента образуют производные изомочевины и уретанов:


[О]
н
Н
-SH + HS-Ф

-S-S-Ф + Н,0


 

 


Иммобилизация путем химического присоединения биоката­лизатора к носителю отличается высокой эффективностью и проч­ностью связи. Несмотря на это, методы ковалентной иммобили­зации ферментов все еще малодоступны для промышленного ис­пользования в связи со сложностью и дороговизной их примене­ния. Однако они остаются незаменимыми инструментами в прак­тике проведения научных и лабораторных исследований по созда­нию энзимов с контролируемыми свойствами.

4.6.3. Иммобилизация клеток

Методы иммобилизации универсальны для всех видов иммо­билизованных биокатализаторов — индивидуальных ферментов, клеток, субклеточных структур, комбинированных препаратов.

Наряду с иммобилизацией ферментов в последнее время все большее внимание уделяется иммобилизации клеток и субклеточ­ных структур. Это объясняется тем, что при использовании иммо­билизованных клеток отпадает необходимость выделения и очис­тки ферментных препаратов, применение кофакторов; создается возможность получения полиферментных систем, осуществляю­щих многостадийные непрерывно действующие процессы.

В промышленных процессах чаще используют покоящиеся клетки. Действительно, многие хозяйственно-ценные продукты синтезируются главным образом в стационарной фазе развития клеточных культур. Растущие клетки нарушают структуру носи­теля. Образующиеся при делении дочерние клетки, покидая но­ситель, загрязняют целевой продукт. Для подавления роста им­мобилизованных клеток растений используют дефицит фитогор­монов, а рост клетки бактерий тормозят добавлением антибио­тиков.

Иммобилизованные клетки микроорганизмов применяют для биотрансформации органических соединений, разделения раце­мических смесей, гидролиза ряда сложных эфиров, инверсии са­харозы, восстановления и гидроксилирования стероидов. Иммо­билизованные хроматофоры используют в лабораторных установ­ках для синтеза АТФ, а пурпурные мембраны — для создания искусственных фотоэлектрических преобразователей — аналогов солнечных батарей. Разрабатывается реактор на основе иммоби­лизованных клеток дрожжей для получения этанола из мелассы, в котором дрожжи сохраняли бы способность к спиртовому броже­нию в течение 1800 ч. Из более чем 2000 известных в настоящее время ферментов иммобилизована и используется для целей ин­женерной энзимологии примерно десятая часть (преимуществен­но оксидоредуктазы, гидролазы и трансферазы).








Дата добавления: 2016-02-09; просмотров: 1061;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.027 сек.