Геометрия Земли и Солнца
Рис.4. 1.Схема определения широты φ и долготы ψ. 1.- экваториальная плоскость; 2 - меридиональная плоскость.
На рис. 4.1.изображена Земля. Она обращается за 24 часа вокруг своей оси. Ось перпендикулярна экваториальной плоскости Земли. Точка С – центр Земли. Точка Р на поверхности Земли характеризуется широтой φ и долготой ψ. Величина φ положительна для точек, лежащих севернее экватора, отрицательна – для точек южнее экватора. Величина ψ положительна к востоку от Гринвича. Вертикальная плоскость – меридиональная. Точки Е и G = точки на экваторе, имеющие те же долготы, что и точка Р и Гринвич соответственно. Один раз каждые 24ч Солнце попадает в меридиональную плоскость. Это – полдень по солнечному времени для всех точек, имеющих данную долготу. Полдень не обязательно совпадает по солнечному времени с двенадцатью часами, т. к. единое установленное время в часовом поясе в пределах 150 долготы. Земля обращается вокруг Солнца за год. Направление земной оси остаётся фиксированным в пространстве под углом σ0 = 23,50 к нормали к плоскости вращения (рис.4.2).
Рис.4.2. Схема вращения Земли вокруг Солнца. Сплошная линия на поверхности Земли – экватор.
Угол между направлением к Солнцу и экваториальной плоскостью называется склонением σ и является мерой сезонных изменений. Мысленно проведём линию от центра Земли до Солнца, пересекающую поверхность Земли в т. Р на рис.4.1. В этом случае σ представляет собой угол φ на рис. 4.1. Таким образом, склонение есть широта точки, для которой Солнце находится в зените в полдень по солнечному времени. Как следует из рис.4.3. в северном полушарии σ плавно меняется от σ0 = +23,50 в период летнего солнцестояния до σ0 = -23,50 в период зимнего солнцестояния. Аналитически получено:
σ=σ0Sin[3600(284+n)/365], (4.2)
где n- день года [n=1 соответствует 1 января]
Суточная облучённость H есть полная энергия солнечного излучения, которая приходится на единицу площади поверхности за день:
H = ∫ G*dt (4.3)
Рис. 4.3. Схема освещения поверхности Земли солнечным излучением в различные времена года. Отмечены широты 00; ± 23,50; ±66,50. Видно, как меняется склонение σ. Стрелками обозначен поток солнечного излучения.
|
|
|
|
|
|
|
|
|
|
|
|
|
Рис. 4.4. Сезонные изменения облучённости Hh горизонтальной приёмной площадки в ясный день на разных широтах.
Летом Hh ≈25 Мдж/м2*сут. во всех широтах. Зимой Нh в высоких широтах много меньше вследствие более короткого дня, косого падения лучей и большого ослабления атмосферой (Римскими цифрами обозначены месяцы). На рис. 4.4.показано изменение суточной облучённости в зависимости от широты местности и времени года. Приведённые на рис.4.4. значения соответствуют измерениям при ясном небе в горизонтальной плоскости. Сезонные изменения определяются тремя основными факторами.
1.Изменением продолжительности дня. Например, на широте 480 продолжительность дня (N) меняется от 16ч в период летнего солнцестояния до 8ч в период зимнего солнцестояния. В полярных широтах N=24ч (летом) и N=0(зимой).
2. Ориентацией приёмной площадки.
3. Изменением поглощения в атмосфере. Атмосфера Земли ослабляет поток солнечного излучения.
Расположение приёмника относительно Солнца
Рис4.5 Зенитный угол θ, угол наклона β и азимут γ для наклонной поверхности
1.- нормаль к горизонтальной плоскости;
2.- нормаль к наклонной плоскости.
Угол наклона β. Угол между рассматриваемой плоскостью и горизонтальной (0 <β<900 для поверхностей, обращённых к экватору; 900<β<1800 для поверхностей повёрнутых от экватора). Азимут γ. Отклонение от меридиана проекции на горизонтальную плоскость нормали к поверхности приёмника ( γ=0 для плоскости, ориентированной строго на юг, γ>0- ориентированной к западу от направления строго на юг; γ<0- к востоку. Для горизонтальной плоскости γ=0).
Угол падения θ. Угол между направлением потока излучения и нормалью к ней. Собирающий приёмник должен быть всегда расположен прямо по направлению потока солнечного излучения (должно выполняться условие θ = 0). Облучённость Нh есть сумма направленной и рассеянной компонент:
Н = ∫Gн*cosθ+Gр)dt (4.4.)
. Приёмник удобно располагать по направлению к экватору. Например, в северном полушарии строго на юг, с наклоном, равным широте.
Рис.4.6. Облучённость горизонтальной поверхности (52° сев. широты, 0° зап. долготы, практически ясные дни). Продолжительность дня и облучённость летом выше, чем зимой Во многих районах типичные средние значения Нс составляют 50-70%, рассчитанных для ясного неба из - за облаков и пыли. Только в пустынях не выше среднего значения.
Поглощение в атмосфере
В процессе прохождения коротковолнового солнечного излучения через атмосферу имеют место различные виды взаимодействия.
- поглощение- переход энергии излучения в тепло (возбуждение молекул) с последующим излучением света большей длины волны;
- рассеяние – изменение направления распространения света в зависимости от длины волны; отражение, которое не зависит от длины волны;
- отражение – около 30% солнечного излучения отражается обратно в космическое пространство. Коэффициент отражения ρ называется альбедо.
- парниковый эффект и длинноволновое отражение. Если радиус Земли Г, а солнечная постоянная G0, то полученная от Солнца энергия составляет
πГ2(1-ρ0)G0. Эта энергия равна энергии, излучаемой в космическое пространство Землёй с излучательной способностью ε = 1 и средней температурой Те.
4πГ2(1- ρ0)G0 = 4πГ2σTe4, (4.5)
где ρ0 – коэффицинет отражения,
следовательно, Те ≈ 2500К = - 230С.
Это соответствует спектральному распределению абсолютно чёрного тела с температурой 2500К с максимальной λ = 10мкм.
|
|
|
Рис. 4.7. Процессы, сопутствующие прохождению солнечного излучения сквозь атмосферу.
Из рис. 4.7. видно, что инфракрасные длинноволновые потоки излучения от поверхности Земли сложны и велики. Средняя температура поверхности Земли составляет 140С, что примерно на 400 С выше температуры внешней атмосферы, которая выступает как инфракрасный теплоизоляционный экран. Это повышение температуры называется парниковым эффектом, так как стекло оранжереи также не пропускает инфракрасное излучение из оранжереи наружу, но пропускает коротковолновое солнечное излучение внутрь. Чистая атмосфера пропускает видимое излучение и становится «окном», открытым для прихода на Землю солнечной энергии. Половина интенсивности космического излучения приходится на диапазон 0,7мкм<λ<2,5мкм. Более 20% солнечного излучения поглощается в атмосфере.
Оценки солнечной энергии
Перед установкой приёмника солнечной энергии необходимо определить, какое количество энергии требуется собрать. Тогда можно рассчитать размер приёмника. Фокусирующим системам трудно успешно работать в условиях сильной облачности, но такие системы следят за Солнцем и поэтому собирают большую часть потока, идущего по нормали к поверхности.
Дата добавления: 2016-02-09; просмотров: 2939;