Прямая как линия пересечения плоскостей

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и , то есть как множество точек, удовлетворяющих системе двух линейных уравнений

 

(V.5)

 

Справедливо и обратное утверждение: система двух независимых линейных уравнений вида (V.5) определяет прямую как линию пересечения плоскостей (если они не параллельны). Уравнения системы (V.5) называются общим уравнением прямой в пространстве .

Пример V.12.Составить каноническое уравнение прямой, заданной общими уравнениями плоскостей

Решение.Чтобы написать каноническое уравнение прямой или, что тоже самое, уравнение прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например Oyz и Oxz.

Точка пересечения прямой с плоскостью Oyz имеет абсциссу . Поэтому, полагая в данной системе уравнений , получим систему с двумя переменными:

Ее решение , вместе с определяет точку искомой прямой. Полагая в данной системе уравнений , получим систему

решение которой , вместе с определяет точку пересечения прямой с плоскостью Oxz.

Теперь запишем уравнения прямой, проходящей через точки и : или , где будет направляющим векто-ром этой прямой.

Пример V.13.Прямая задана каноническим уравнением . Составить общее уравнение этой прямой.

Решение.Каноническое уравнение прямой можно записать в виде системы двух независимых уравнений:

Û

Получили общее уравнение прямой, которая теперь задана пересечением двух плоскостей, одна из которых параллельна оси Oz ( ), а другая – оси Оу ( ).

Данную прямую можно представить в виде линии пересечения двух других плоскостей, записав ее каноническое уравнение в виде другой пары независимых уравнений:

Û

Замечание. Одна и та же прямая может быть задана различными системами двух линейных уравнений (то есть пересечением различных плоскостей, так как через одну прямую можно провести бесчисленное множество плоскостей), а также различными каноническими уравнениями (в зависимости от выбора точки на прямой и ее направляющего вектора).

 

Ненулевой вектор, параллельный прямой линии, будем называть ее направляющим вектором.

Пусть в трехмерном пространстве задана прямая l, проходящая через точку , и ее направляющий вектор .

Любой вектор , где , лежащий на прямой, коллинеарен с вектором , поэтому их координаты пропорциональны, то есть

 

. (V.6)

 

Это уравнение называется каноническим уравнением прямой. В частном случае, когда ﻉ есть плоскость, получаем уравнение прямой на плоскости

 

. (V.7)

 

Пример V.14. Найти уравнение прямой, проходящей через две точки , .

Будем считать вектор направляющим, тогда уравнение искомой прямой имеет вид

,

где , , .

Удобно уравнение (V.6) записать в параметрической форме. Так как координаты направляющих векторов параллельных прямых пропорциональны, то, полагая

,

получим

где t – параметр, .








Дата добавления: 2016-01-26; просмотров: 1521;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.