Единственность разложения на простые сомножители.
Утверждение 1.
Любое целое число a либо взаимно просто с данным простым р, либо р\а.
Доказательство:
, p – простое число, выполняется (a,p)\p. Тогда в силу простоты p, либо (a,p)=p, либо (a,p)=1. В первом случае р\а, во втором a взаимно просто с р. Что и требовалось доказать.
□
Теорема (Основное свойство простых чисел)
Если a1,…,ak Z, p\( a1∙…∙ak) : p\ai.
Доказательство:
В силу утверждения 1, либо (ai,p)=1, либо (ai,p)=p. Если бы выполнялось (ai,p)=1 то выполнялось бы ( a1∙…∙ak, p)=1, и тогда p не делило бы (a1∙…∙ak). Получили противоречие с условием теоремы : p\ai.
□
Теорема (О единственности разложения на произведение простых чисел)
, а>1 существует единственное разложение a=p1∙p2∙…∙pn, где , рi – простое .
Доказательство:
Действительно, обозначая буквой p1 наименьший (простой) делитель а, имеем a=p1a1 Если a1>0, то, обозначая p2 наименьший (простой) делитель числа a1, имеем a1=p2a2 и т.д., пока не придем к an=1 для некоторого n (поскольку ряд a1, a2, …, an - убывающий ряд натуральных чисел, то рано или поздно мы придем к единице).
Тогда a=p1∙p2∙…∙pn. Показали существование разложения на простые сомножители. Теперь докажем единственность.
Предположим, что для того же самого а существуетвторое разложение на простые сомножители a=q1∙q2∙…∙qs, и, не нарушая общности, предположим, что s≥n. Тогда
p1∙p2∙…∙pn = q1∙q2∙…∙qs *
В силу основного свойства простых чисел, q1\( p1∙p2∙…∙pn) i: q1\pi. Не нарушая общности, предположим, что i=1 q1\p1. В силу простоты чисел p1, q1, получим p1=q1. Сократив обе части равенства (*) на q1, получим
p2∙…∙pn = q2∙…∙qs,
p1=q1
Повторив рассуждения для q2, получим
p3∙…∙pn = q3∙…∙qs,
p1=q1, p2=q2
И т.д. В итоге получим
1=qn+1∙…∙qs,
p1=q1, p2=q2, … , pn=qn
Отсюда qn+1=1, …, qs=1. То есть оба разложения на простые сомножители тождественны.
□
В разложении числа на простые сомножители некоторые из сомножителей могут повторяться. Обозначая p1,…, pk различные из них, а α1,…, αk – кратности их вхождения в разложение, получим каноническое разложение числа а:
Добавим, что задача разложения числа на простые сомножители, или, иначе, задача факторизации, считается сложной задачей, поскольку известные алгоритмы факторизации имеют экспоненциальную или субэкспоненциальную сложность. Ознакомиться с такими алгоритмами можно будет в гл. 2 настоящего пособия.
Теорема (о делителях числа)
Пусть – каноническое разложение числа a. Тогда все делители а имеют вид
, где 0≤β1≤α1, 0≤β2≤α2, …, 0≤βk≤αk.
Доказательство:
Пусть q\a a представимо в виде a=dq, тогда все простые делители числа d входят в каноническое разложение числа а с показателями, не меньшими тех, с которыми они входят в каноническое разложение числа а.
□
Следствие 1
Количество различных делителей числа есть .
Доказательство очевидно, оно следует из числа всевозможных сочетаний в формуле делителя в теореме о делителях числа.
Следствие 2
НОД(a1,…,an), где ( ), есть , где ( ).
Пример.
a1=2∙3∙52=150, a2=22∙5∙7=140, a3=23∙5=40.
p1=2, p2=3, p3=5, p4=7.
a1= , a2= , a3= .
НОД(a1,a2,a3)= =2∙5=10.
Следствие 3
Совокупность общих делителей a1,…,an совпадает с совокупностью делителей НОД(a1,…,an).
Следствие 4
НОК , где ,
Пример.
НОК(150,140,40)=
Следствие 5
Если a1,…,an – попарно простые числа, то НОК(a1,…,an)= a1∙…∙an
Следствие 6
Совокупность общих кратных чисел a1,…,an совпадает с совокупностью кратных их наименьшего общего кратного.
Доказательства следствий 1–6 предоставляется читателю в качестве упражнения. Отыскать эти доказательства можно в [5] (Виноградов, «Основы теории чисел»).
Дата добавления: 2015-11-28; просмотров: 1935;