Две плоскости взаимно перпендикулярны, если одна из них содержит прямую, перпендикулярную к другой плоскости.

Поэтому построение плоскости a, перпендикулярной к плоскостиb,можно осуществить двумя путями;

1. Проводим прямую m, перпендикулярную к плоскости b (или a), затем прямую m заключаем в плоскость a (или b).

2. Проводим прямую n, принадлежащую или параллельную плоскости b (или a), затем строим плоскость a (илиb), перпендикулярно к прямой n.

Так как через прямую m можно провести множество плоскостей (первый путь решения), то задача имеет множество решений. То же самое происходит и при решении по второму пути ( в плоскости или параллельно ей можно провести множество прямых n). Чтобы конкретизировать задачу, необходимо указать дополнительные условия.

Пример 1. Чрез данную прямую а провести плоскость a, перпендикулярную к плоскостиb, заданной параллельными прямыми 1 и f (рис.7.7.).

Рис 7.7

1. Определяем направление проекций перпендикуляра к плоскости a. для этого находим горизонтальную проекцию горизонтали h' и фронтальную проекцию фронтали u²,

2. Из проекции произвольной точки Аеа проводим проекции перпендикуляра m'^h' и m²^u². Плоскость a^b, т.к m^b

 

Пример 2.Через данную точку А провести горизонтально проецирующую плоскость b, перпендикулярную к плоскости a, заданной следами (рис.7.8)

Искомая плоскость рдолжна проходить перпендикулярно к прямой, принадлежащей плоскости a В связи с тем, что плоскость b должна быть горизонтально проецирующей, то прямая, перпендикулярная к ней , должна быть параллельна плоскости H, т.е. являться горизонталью плоскости а или (что тоже самое) горизонтальным следом этой плоскости - aн. Поэтому через горизонтальную проекцию точки А¢ проводим горизонтальный след bн^aн, фронтальный след bv^оси X.

7.3. Определение действительной величины угля между прямой и плоскостью. Между двумя плоскостями

Углом между прямой и плоскостью называется угол между этой прямой и ее проекцией на данную плоскость (прямая не перпендикулярна плоскости).

Пространственная геометрическая модель, иллюстрирующаяэто определение, показана на рис 7.9 .

План решения задачи может быть, записан:

1 .Из произвольной точки АÎa опускаем перпендикуляр на плоскость;

2. Определяем точку встречи этого перпендикуляра с плоскостью a(точка Аa ортогональная проекция точки А на плоскость a);

 


3.Находим точку пересечения прямой a с плоскостью а (точка Аa- след прямой а на плоскости a);

4.Проводим (А°Аa)- проекдию прямой а на плоскость a;

5.Определяем действительную величину ÐААaАa,т.е.Ðj0. Решение этой задачи может быть значительно упрощено, если определять не Ðj0между прямой и плоскостью, а дополнительный до 90° Ðg° В этом случае отпадает необходимость в определении точки Аa и

проекции аaЗная величину у0 , вычисляем— j0=90-g0.








Дата добавления: 2016-01-11; просмотров: 913;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.