Закономерности сложного напряженного состояния

а) Напряжение на косых площадках.

Рассмотрим простое растяжение стержня.

 

 

Рис.11.1

Вырежем элемент под углом

 

Рис.11.2

 

Выразим через s (известный закон параллелограмма, справедливый для сил, для напряжений не применим).

Так как призма находится в покое, то .

 

Рис.11.3

 

Имеем:

(11.1)

По закону параллелограмма:

(11.2)

Подставляя сюда (11.1) получим:

Из рис.11.1 следует, что

Таким образом, получаем:

(11.3)

С учетом того, что s направлена по Oz, формулы запишем в виде:

.

 

б) Ортогональное нагружение.

Рис.11.4.

Если рассматриваемый угол заменить углом , то выкладки будут совершенно аналогичными. Тогда получим:

(11.4)

Согласно рисунку 11.4, напряжение должно быть направлено вверх, а не вниз как на рис.11.2. Поэтому в (11.4) в выражении для поставлен знак “-“.

 

11.2. Зависимость и от касательных напряжений

 

Вырежем из тела призму (рис.11.5). Пусть на его грани действуют напряжения . В силу закона парности:

Рис.11.5. Рис.11.6.

 

Выразим через

Составим уравнения равновесия:

Поделим эти два уравнения на ( ). Учитывая закон парности получим:

 

Отсюда, складывая, получим:

Аналогично найдем:

 

Главные напряжения

Рассмотрим общий случай воздействия на элемент тела напряжений .

Для этого сложим все 3 формулы и получим :

 

Эти формулы подобны формулам для осевых и центробежных моментов инерции для повернутых осей. Поэтому аналогично вводятся и понятия главных напряжений и главных площадок. Если вычислить для разных углов, то можно найти максимальное и минимальное . Эти напряжения называются главными.

Обозначается:

Главные площадки – это сечения, на которых экстремальны.

Угол , который определяет положение главных площадок, получаем по теореме Ферма: при должно быть

Отсюда находим .

Аналогично теории геометрических характеристик можно видеть, что на этих новых площадках касательных напряжений не будет, т.е.

.

Следствие:

Всегда можно найти в теле такое положение малого элемента, в котором он только растягивается или сжимается, причем эти напряжения будут экстремальными.

Примечание: согласно свойствам , если взять угол , то условие снова удовлетворится. Таким образом, существуют 2 главные площадки под углами и .

 

Вычисление

В некотором теле найдем главные площадки для малого элемента.

 

 

Рис.11.7 Рис.11.8

Оси, ортогональные главным площадкам, обозначим . На главных площадках

Рассмотрим площадку под углом . Используя формулу для при получим:

 

 

Поскольку , то

Таким образом, возникает на площадках, расположенных под углом к главной площадке

Можно показать, что в случае, когда действуют лишь напряжения значения главных напряжений можно вычислять даже не зная положения главных площадок по формулам :

Тогда: .

 

 








Дата добавления: 2015-11-28; просмотров: 637;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.