АБРАЗИВНЫЕ МАТЕРИАЛЫ
Все части протезов и аппаратов после изготовления в лаборатории должны пройти тщательную отделку, шлифовку и полировку. Перечисленные манипуляции преследуют цель удалить излишки материала, выступы, неровности, сделать поверхность зубного протеза, шины или аппарата гладкой, не вызывающей травму или раздражение тканей полости рта. Высокая чистота поверхности протеза повышает коррозионную стойкость материала. Неровности поверхности могут быть местами скопления остатков пищи, минеральных и органических отложений, являющихся хорошей питательной средой для микроорганизмов и создающих благоприятные условия для коррозии, отложения налета, подобного зубному камню.
Плохо обработанные зубные протезы, несмотря на грамотно выбранную конструкцию и правильное ее техническое исполнение, могут вызывать у пациентов ряд неудобств и значительно замедлять адаптацию к ним. Хорошая отделка, шлифовка и полировка способствуют повышению прочности протеза. Известно, что при испытании на прочность идентичных образцов, имеющих разную чистоту отделки, результаты различны. Более высокие показатели отмечаются у образцов с более тщательной отделкой, шлифовкой и полировкой.
Для шлифования и полировки протезов используются различные мелкозернистые вещества, превышающие по твердости материал, подлежащий обработке. Такие материалы называют абразивными (лат. abrasio — соскабливание). Применение абразивных материалов предполагает обязательное движение их по обрабатываемой поверхности. При этом каждое зерно абразивного материала совершает режущее, скоблящее действие, подобно резцу. Характер действия абразивного зерна зависит от ряда факторов, среди которых наиболее важными являются размеры, форма, состав и свойства самого зерна.
В промышленности из зерен абразива чаще изготавливают разнообразные инструменты. Зерна могут применяться также в виде порошков, паст. Их наносят на поверхность материи или бумаги, вносят в резиновые круги.
Абразивные материалы, применяемые в промышленности, бывают естественные и искусственные. Естественные абразивные материалы представляют собой измельченные минералы. К ним относятся алмаз, корунд, наждак, гранаты, пемза, мел и др. Искусственные абразивные материалы получают в промышленности химическим путем. Наибольшее распространение получили искусственный корунд (электрокорунд), являющийся кристаллической окисью алюминия (А1203), углеродистые соединения (карбиды) некоторых элементов — карбиды кремния, бора, вольфрама, а также нитриды (например, эльбор — кубический нитрид бора).
Естественные абразивные материалыАлмаз — самый твердый минерал, встречающийся в природе. Он представляет собой кристаллическую разновидность углерода, отличающуюся особой формой кристаллической решетки, придающей углероду высокую твердость.
Раздел II. Материалы, применяемые для изготовления пластиночных протезов при полной утрате зубов
Алмаз является эталоном твердости. По шкале Мооса он имеет наивысшую твердость — 10. Алмазные пирамидки, или конусы, используются в приборах для определения твердости различных материалов. Технические, непрозрачные алмазы широко применяются при изготовлении особо прочных буров. Из алмазной крошки делают шлифовальные круги, бруски, диски. В стоматологии мелкая алмазная крошка употребляется при изготовлении шлифующих инструментов, предназначенных для препарирования зубов. Такие инструменты обладают большой износостойкостью. Их применение делает процедуру препарирования зубов менее травматичной и более короткой.
Корунд — естественный минерал, состоящий из кристаллической окиси алюминия (А1203). В природе в чистом виде встречается редко. Кристаллы корунда содержат до 90% окиси алюминия. Наиболее частыми примесями являются окислы железа и кремния, придающие минералу различные цветовые оттенки. Его цветовые разновидности — сапфир, рубин — используются в ювелирном деле. По твердости корунд уступает алмазу. Его твердость по шкале Мооса — 9.
Наждак является смешанной горной породой. В его состав входят до 97% корунда, соединения железа и ряд других минералов. Твердость наждака по шкале Мооса — 7—8. Различие в твердости разных его партий зависит от количества и вида примесей. Для получения высококачественного продукта природный наждак обогащают, т. е. уменьшают количество примесей до 1—2%.
Измельченный до порошкообразного состояния наждак сортируют на ситах и наносят на поверхность бумажных или матерчатых полотен, предварительно покрытых клеевым слоем. Наждачные полотна или диски используются при шлифовании. При отделке зубных протезов наждачную бумагу применяют для шли-
фовки искривленных поверхностей пластмассовых протезов.
Пемза — продукт вулканической деятельности. Это быстро застывшая насыщенная газообразными веществами лава. Состав пемзы непостоянен. Основным компонентом ее обычно является кремнезем (60—70%). Другие составные части включают окислы металлов, придающие пемзе различную окраску.
Пемза — очень пористый, твердый и хрупкий материал. Поверхность излома ее изобилует заостренными неровностями. Эти особенности поверхности позволяют использовать дробленую пемзу в качестве шлифующего материала. В зу-ботехнической практике употребляется мелкий порошок пемзы. Во взвеси с водой он образует массу, применяемую для шлифовки зубных протезов.
Искусственные абразивные материалыЭлектрокорунд — кристаллическая окись алюминия (А1203). Получается искусственным путем из пород, содержащих глинозем. В промышленности с этой целью используются бокситы, содержащие не менее 50% глинозема. При расплавлении боксита с коксом в электрических печах происходит отделение примесей от общей массы. Электрокорунд содержит от 85 до 98% окиси алюминия.
В зависимости от содержания окиси алюминия электрокорунды делят на три вида. Нормальный электрокорунд (алунд) содержит до 87% окиси алюминия. Имеет цветовые оттенки от темно-красного до серо-коричневого. Белый электрокорунд (корракс) содержит до 97% окиси алюминия. Цвет его светлый, иногда розоватый. Имеет режущую способность на 30—40% большую, чем нормальный электрокорунд. Монокорунд содержит до 99% окиси алюминия и до 0,9% окиси железа. Монокорунд отличается наибольшей прочностью и износостойкостью.
Глава 16. Вспомогательные материалы
Электрокорунд имеет твердость около 9 по шкале Мооса. Плотность его — от 3,2 до 4 г/см3. Материал термостойкий, способен выдерживать нагревание до 2000°С. Частички электрокорунда имеют прочные острые режущие элементы, вследствие чего он успешно применяется для шлифования твердосплавных металлических и различных других изделий.
Карборунд представляет собой карбид кремния — соединения кремния с углеродом (SiC). Карборунд получается плавлением в электропечах смеси, состоящей в основном из кокса и кварцевого песка, при температуре около 2200°С. В результате химического соединения углерода с кремнием получается карбид кремния. Он имеет кристаллическое строение. Чистый карборунд обладает большой твердостью — 9,5—9,75 по шкале Мооса. Кристаллы чистого карбида кремния бесцветны, однако технический карборунд имеет от 3 до 5% примесей, придающих ему окраску.
Карборунд получают двух видов. Черный карборунд содержит не менее 95% SiC. Он применяется для обработки изделий, изготовленных из цветных металлов, а также неметаллических материалов, имеющих невысокие прочностные показатели. В состав зеленого карборунда входит свыше 97% SiC. Он имеет большую твердость и применяется для обработки твердосплавных деталей, заточки инструментов.
Для изготовления стоматологических шлифующих инструментов используются обе разновидности карборунда. Карборунд вполне удовлетворяет требованиям зуботехнического производства и запросам ортопедических клиник. Карборундовые инструменты обладают хорошей шлифующей способностью. Такие инструменты изготавливаются из порошка различной степени дисперсности. Зерна карборунда имеют неправильную форму с четко выраженными острыми
ребрами, кромками, что обеспечивает высокую режущую способность. Карбид кремния термоустойчив, он выдерживает нагревание до 2050°С.
Карбиды бора и вольфрама представляют собой химические соединения соответствующих металлов с углеродом. Материалы имеют твердость, близкую к твердости алмаза.
Технический карбид бора содержит от 85 до 95% чистого кристаллического В4С Карбид бора обладает высокой твердостью и хрупкостью. Применяется в промышленности для обработки твердосплавных инструментов. Карбид вольфрама в мелкодисперсном виде употребляется вместо алмазной крошки при изготовлении боров и некоторых шлифующих инструментов.
В последние годы получен новый синтетический абразивный материал эльбор. Он представляет собой кубический нитрид бора. По твердости он идентичен алмазу, но отличается большей теплостойкостью.
Дата добавления: 2015-12-29; просмотров: 2687;