Теорема 2. Признак Даламбера.

1) при

2) при

3) при вопрос о сходимости остается открытым.

Пример.Исследовать на сходимость ряд:

по признаку Даламберу ряд сходится.

 

Теорема 3.Радикальный признак Коши.

1) при

2) при

3) при вопрос о сходимости остается открытым.

Пример:исследовать на сходимость числовой ряд:

Решение:

Следовательно, ряд сходится по Коши.

 

Теорема 4. Интегральный признак Коши.

Пусть члены ряда

положительны и не возрастают, то есть и являются значениями непрерывной невозрастающей функции f(x) при x= 1, 2, …, n.

Тогда для сходимости ряда необходимо и достаточно, чтобы сходился несобственный интеграл:

Пример.

Решение:

Следовательно, ряд расходится, так как расходится несобственный интеграл.

 

Лекция 19. ЗНАКОПЕРЕМЕННЫЕ РЯДЫ. ПОНЯТИЕ АБСОЛЮТНОЙ И УСЛОВНОЙ СХОДИМОСТИ ЗНАКОПЕРЕМЕНОГО РЯДА.

 

Ряд называется знакопеременным, если любой его член может быть, как положительным, так и отрицательным.

Рассмотрим знакочередующиеся ряды:








Дата добавления: 2015-12-16; просмотров: 866;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.