Лекция 18. ЧИСЛОВЫЕ РЯДЫ.СУММА РЯДА.

Задача суммирования множества слагаемых решается в теории рядов.

где u1,u2,u3…., un…–члены бесконечной числовой последовательности, называется числовым рядом.

Числа u1,u2,u3…., un… называют членами ряда, а un– общий член ряда.

Сумма конечного числа n первых членов ряда называется n–й частичной суммой ряда.

Sn= u1 + u2 +… + un,

т.е. S1= u1; S2= u1+ u2

Sn= u1+ u2+…+ un

Ряд называется сходящимся, если существует конечный предел частичной суммы Snпри n , то есть

Число S называется суммой ряда.

В противном случае:

Тогда ряд называется расходящимся.

Эталонные ряды.

1. Геометрический ряд (геометрическая прогрессия)

.

.

Пример.

2. Гармонический ряд.

3. Обобщенный гармонический ряд.

Пример.

.

Признаки сходимости знакоположительных рядов

Теорема 1. Необходимый признак сходимости.

C помощью этого признака можно установить расходимость ряда.

Пример.

Достаточные признаки

Теорема 1.Признак сравнения рядов.

Пусть даны два знакоположительных ряда:

и

Причем тогда, если ряд (2) сходится, то сходится и ряд (1).

Если ряд (1) расходится, то расходится и ряд (2).

Пример.

Сравним этот ряд с геометрическим рядом:

Сравним ряды:

Следовательно, по признаку сравнения искомый ряд сходится.

 








Дата добавления: 2015-12-16; просмотров: 1151;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.