Методы защиты металлов от коррозии

· Защитные покрытия.Неметаллические: нанесение лаков, красок, эмалей, фосфатирование, оксидирование и т.д. Металлические: их делят на анодные (металл покрытия более активный, чем защищаемый) и катодные (металл покрытия менее активный, чем защищаемый). Например, если поверхность стальной детали покрыта в одном случае слоем цинка, а в другом - слоем никеля, и оба металла находятся в кислой среде, то цинковое покрытие - анодное , а никелевое покрытие - катодное .

· Электрохимическая защита. Сущность метода заключается, как правило, в подаче на защищаемый металл избыточного количества электронов. Два способа реализации этого метода - протекторная и катодная защита. При протекторной защите источником электронов является протектор (более активный металл). Например, стальной корабельный корпус соединяют с протектором (цинковой болванкой): цинк разрушается, отдавая электроны на корпус корабля и защищая его от коррозии. При катодной защите электроны на защищаемую конструкцию подают, путем присоединия её к отрицательному электроду (катоду) внешнего источника постоянного тока. Положительный электрод присоединяют к ненужной стальной детали, которая и корродирует.

· Обработка коррозионной среды. Проводится для снижения коррозионной активности среды: нейтрализация, кипячение, дегазация жидкостей, осушение газов, добавление ингибиторов (замедлителей коррозии) и т.д.

ЭЛЕКТРОЛИЗ

 

Электролиз - сложная совокупность процессов (в основном окислительно-восстановительных), происходящих при прохождении через раствор или расплав электролита электрического тока. При электролизе электрическая энергия расходуется на проведение химических реакций, т.е. это процесс, обратный происходящему в гальваническом элементе.

Электролиз проводят в специальных устройствах - электролизёрах. Простейший электролизёр состоит из ёмкости, в которую помещают электролит, и двух электродов.

· Катодэлектролизёра подключён к отрицательномуполюсу внешнего источника тока, на нём происходит восстановление.

· Анодэлектролизёра подключён к положительномуполюсу источника тока, на нём происходит окисление.

Электроды могут быть активные (расходуемые) и инертные (нерасходуемые). В качестве инертных электродов обычно используют графит и платину.

Катодные процессы. Участниками катодного процесса могут быть:

· катионы металлов

;

· катионы водорода (свободные или в составе молекул воды)

(в кислой среде);

(в нейтральной и щелочной средах).

В первую очередь восстанавливаются более сильные окислители, т.е. проходит полуреакция с более положительным потенциалом. При наличии тока в цепи потенциалы смещаются от их равновесных значений. Это называется явлением перенапряжения. Для катионов металлов перенапряжение невелико, и можно воспользоваться значениями стандартных электродных потенциалов. Потенциал восстановления катионов водорода из воды с учетом перенапряжения

Анодные процессы. Участниками анодного процесса могут быть:

· материал анода ;

· молекулы воды ;

· анионы солей, например , и т.д.

Анионы, включающие элементы в высшей степени окисления, на аноде не окисляются (SO42— , NO3 , CO32—, PO43— и другие).

В первую очередь окисляются более сильные восстановители, т.е. проходит полуреакция с меньшим потенциалом. Для анионов можно воспользоваться значениями стандартных электродных потенциалов. Потенциал выделения кислорода из воды с учетом перенапряжения

Пример 1. Рассмотреть схему электролиза водного раствора Na2SO4 с инертными электродами. В растворе соль диссоциирует на ионы: Na2SO4 = 2 Na+ + SO42—

При подаче на электроды напряжения происходит направленное перемещение частиц: положительно заряженных ионов Na+ к отрицательному катоду, а отрицательно заряженных ионов SO42- - к положительному аноду.

 

 

ē ē

       
   


(-) катод анод (+)

           
     
 


H2O H2O H2O H2O

Na+

SO42—®

 
 

 


Схема электролиза:

К (-) А (+)

 

Na+ , HOH SO42—, HOH

Сульфат-ионы не разряжаются,

, происходит окисление воды:

> , .

т.е. происходит восстановление воды: В прианодном пространстве скаплива-

. ются ионы H+, среда становится кислой.

В прикатодном пространстве скапли-

ваются ионы ОН, среда становится

щелочной.

Пример 2. Рассмотреть схему электролиза водного раствора NiCl2 с инертными электродами и с электродами из никеля.

· Инертные электроды. NiCl2 = Ni2+ + 2Cl

К (-) А (+)

 

Ni2+ , HOH Cl, HOH

> , происходит < ,

восстановление ионов никеля: происходит окисление ионов Cl:

· Электроды из никеля. К (-) А (+) Ni

 

Ni2+ , HOH Cl-, HOH, Ni

,

, ,

< и

происходит окисление (растворение)

анода: .

Количественные соотношения при электролизе определяются в соответствии с законом Фарадея:

· масса веществ, образующихся или растворяющихся при электролизе, пропорциональна количеству электричества, прошедшего через электролит.

При проведении расчётов используют формулу

,

где - масса вещества, г;

- сила тока, А;

- время, с;

- число электронов, участвующих в электродном процессе;

- постоянная Фарадея (96500 Кл/моль).

Для определения объема газообразных продуктов, выделяющихся при нормальных условиях, необходимо подставлять вместо молярной массы (М) молярный объем газа при нормальных условиях (V=22,4 л/моль).

Пример 3. Рассчитать массу никеля и объём хлора, выделившихся при электролизе раствора хлорида никеля с инертными электродами (см. пример 2) за 1 час при силе тока 2 А.

Решение

; .

 

 








Дата добавления: 2015-12-16; просмотров: 1075;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.018 сек.