Пороговая обработка.
Многие задачи обработки изображений связаны с преобразованием полутонового изображения в бинарное (двухградационное) или, по-другому, в графический препарат. Такое преобразование осуществляется для того, чтобы сократить информационную избыточность изображения, оставив в нем только ту информацию, которая нужна для решения конкретной задачи (например, очертания объектов), и исключив несущественные особенности (фон).
В ряде случаев требуемый графический препарат удается получить в результате пороговой обработки полутонового изображения. Она заключается в разделении всех отсчетов изображения на два класса по признаку яркости: объект и фон. Например, выполняется поэлементное преобразование вида
где f0 – некоторое «пороговое» значение яркости (рисунок 5.1). Основной проблемой здесь является выбор порога. Пусть исходное полутоновое изображение содержит интересующие нас объекты одной яркости на фоне другой яркости (типичные примеры: машинописный текст, чертежи, медицинские пробы под микроскопом и т.д.). Тогда плотность распределения вероятностей яркости должна выглядеть как два узких пика (в идеале два дельта-импульса); то есть так, как показано на рисунке 5.2а. В таком случае задача установления порога тривиальна: в качестве f0 можно взять любое значение между «пиками». На практике, однако, имеет место более сложный случай: изображение зашумлено, кроме того, как для объектов, так и для фона характерен некоторый разброс яркостей. В результате функция плотности распределения вероятностей размывается (рис. 5.2б).
Рисунок 5.1 – Пример порогового преобразования яркости изображения
Рисунок 5.2 – Выбор порога при пороговой обработке
Часто бимодальность распределения тем не менее сохраняется. В такой ситуации можно выбрать порог f0, соответствующий положению минимума между максимумами (модами). В общем случае гистограммы распределения вероятностей яркостей, измеренные по реальным изображениям, могут оказаться унимодальными или, наоборот, иметь «изрезанный», полимодальный характер (рисунок 5.3).
Укажем некоторые методики определения порога в этих ситуациях. Методика 1 заключается в аппроксимации участка гистограммы между пиками какой-либо гладкой функцией, например, параболой, и нахождении ее минимума через производную (рисунок 5.3а). По существу такая аппроксимация реализует сглаживание гистограммы. Для этого сглаживания можно построить специальный фильтр низких частот.
Методика 2 основана на том, что иногда удается подобрать хорошие модели отдельно для плотностей распределения вероятностей яркости объекта и фона. Тогда можно произвести аппроксимацию гистограммы суммой этих плотностей вероятностей (рис. 5.3б):
где p1(f), p2(f) – аналитически заданные функции плотности вероятностей для объекта и фона, p — вероятность объекта (точнее, доля площади изображения, занимаемая объектом). Эта вероятность и параметры указанных плотностей распределения вероятностей яркости, как правило, подлежат оценке.
После оценки параметров можно выбрать порог f0 в соответствии с принципом максимального правдоподобия, то есть из соотношения
Рисунок 5.3 – Методики определения порога при пороговой обработке
Отметим, что данный способ определения порога сохраняет работоспособность и тогда, когда бимодальность гистограммы скрыта из-за большого разброса яркостей и малой вероятности p. Основным недостатком метода является сложность аппроксимации.
Дата добавления: 2015-12-16; просмотров: 2186;