Топологические матрицы графов
Геометрия любого графа может быть описана несколькими матрицами. При расчетах наиболее часто используют следующие названия матриц: матрица соединений (узловая матрица), контурная матрица, матрица главных сечений, матрицы параметров ветвей.
Узловая матрица (А). Рассмотрим направленный граф электрической цепи. Составим и заполним таблицу согласно правилам: - если ветвь графа направлена от узла, то в клетку пересечения их нумераций вписывается +1; - если ветвь графа направлена к узлу, то в клетку пересечения их нумераций вписывается −1; - если ветвь графа не связана с узлом, то в клетку пересечения их нумераций вписывается 0. |
Таблица
У з л ы | В е т в и | |||||
+1 | +1 | −1 | ||||
−1 | +1 | +1 | ||||
−1 | −1 | +1 | ||||
+1 | −1 | −1 |
Согласно заполненной таблице запишем полную узловую матрицу:
АП = , А= .
которая и определяет схему электрической цепи.
Из матрицы АП следует, что сумма чисел в любом столбце равна нулю, поэтому одна из ее строк является зависимой. В этом случае матрицу АП заменяют матрицей Апутем вычеркивания любой строки из матрицы АП. Узел, из которого исключается строка, принято называть базисным. У графа такой узел обозначается через ноль. Тогда размер матрицы Аравен . В нашем случае размер матрицы А будет: .
Перестановка столбцов или строк изменит лишь нумерацию ветвей и узлов, но не изменит схему цепи.
Составим соответствующую таблицу:
Контуры | В е т в и | |||||
I | +1 | −1 | +1 | |||
II | +1 | −1 | −1 | |||
III | +1 | +1 | +1 |
Согласно заполненной таблице запишем матрицу главных контуров (контурная матрица):
В = .
Размер контурной матрицы В: .
Таблица
Главное сечение | В е т в и | |||||
I | +1 | +1 | −1 | |||
II | +1 | +1 | −1 | |||
V | −1 | +1 | +1 |
Согласно заполненной таблице запишем матрицу главных сечений:
Q = .
Размер матрицы главных сечений Q: .
Для заданного графа организуем контурную матрицу:
В = .
Матрица сопротивлений ветвей будет диагональной размером :
ZB = .
Далее находим произведение матрицы ZB и транспонированной (когда строки и столбцы меняются местами) контурной матрицы ВТ (размер (6х3)):
ZBBT = ∙ = .
Матрицу контурных сопротивлений определит тройное матричное произведение:
ZK = B ZBBT = ∙ =
= . (3 х 3)
Матрица проводимостей ветвей (YB) - эта матрица будет так же диагональной, но обратной относительно матрицы сопротивлений:
YB = .
Матрицу узловых проводимостей определит тройное матричное произведение:
Yq = AYBAT .
Матрицы источников ЭДС (Е) и токов (J) -это столбцовые матрицы, число строк в которых равно числу ветвей графа:
; .
Дата добавления: 2015-12-11; просмотров: 785;