Инженерный анализ в машиностроении
Все созданные при конструировании геометрические точные модели являются основой для решения самых разных задач – прочностного анализа проектируемой конструкции, анализа различных механизмов (статический, кинематический, динамический), определение сил реакций от внешних нагрузок, и др. Все эти задачи можно решить с помощью систем инженерного анализа – CAE-систем (Computer Aided Engineering).
Развитие средств вычислительной техники стимулировало распространение инженерного анализа практически на все этапы проектирования как отдельных деталей, узлов и агрегатов, так и изделий в целом. Многообразие физических процессов в наукоемких изделиях, субъективность в постановке задач анализа, в подходах к идеализации протекающих процессов, в выборе методов решения и многие другие причины привели к созданию огромного числа специальных методик, алгоритмов и программ, предназначенных для решения задач анализа машиностроительных изделий. В этом разделе основное внимание уделяется вопросам организации сквозного процесса конструирования и анализа в концепции САLS-технологий и особенностям использования наиболее распространенных программ.
Можно условно выделить четыре основные группы программ анализа:
• программные системы проектирования;
• универсальные программы анализа;
• специализированные программы анализа;
• программы анализа систем управления.
Первая группа программ - программные системы проектирования, органически объединяющие процессы конструирования и анализа в едином комплексе, о них уже шла речь выше. К числу программных систем проектирования относятся системы CATIA5, EUCLID3, UNIGRAPHICS и др. При их использовании не возникают трудности с созданием сложной и математически точной модели изделия, так как только эти системы обладают самыми мощными средствами геометрического моделирования. Организация обмена между подсистемами конструирования и анализа также незаметна для пользователя - обе подсистемы оперируют с одной
базой данных или имеют внутренние форматы данных. Состав различных видов анализа ограничен по сравнению с составом универсальных программ и в основном предназначен для решения таких задач, как структурный анализ, линейный статический анализ, модальный анализ, анализ (продольных) деформаций, тепловой анализ, анализ устойчивого состояния (электропроводность, линейная конвекция) и др.
Во вторую группу программ входят универсальные программы анализа машиностроительных изделий. Мировыми лидерами в области разработки, поставки и сопровождения этих программ являются ANSYS, Inc. (США), SAMTECH (Бельгия), MacNeal Schwendler Corporation (МSС) (США). В 1970-е годы одним из ведущих методов компьютерного моделирования стал метод конечно-элементного анализа (FEA). Благодаря разработкам этих и многих других фирм, инженерный анализ стал практически повсеместным и постепенно перерос в мощное направление, получившее свое воплощение в системах автоматизированного анализа (САЕ).
Фирмой ANSYS разработано семейство программ анализа. Ведущей многоцелевой программой этого семейства является ANSYS/Multiphysics [5]. В дополнение к ней создано подмножество автономных, специализированных пакетов, расширяющих возможности основной программы. Среди них можно выделить следующие:
• ANSYS/Mechanical - решение задач прочности, теплопередачи и акустики. Расчет и оптимизация конструкции, определение перемещений, напряжений, усилий, давлений и температур можно выполнить с помощью этого пакета;
• ANSYS/Structural - прочностной анализ проектируемого изделия с учетом геометрических и физических нелинейностей, нелинейного поведения конечных элементов и потери устойчивости;
• ANSYS/LinearPlus - упрощенная версия пакета ANSYS/Mechanical, предназначенная для решения задач линейной статики, динамики и устойчивости конструкции;
• ANSYS/Thermal - может использоваться для анализа тепловых стационарных и нестационарных процессов;
• ANSYS/PrePost - предназначен для построения конечно-элементной сетки на стадии подготовки задачи и обработки результатов решения в требуемом виде.
Дополнительными программами этой фирмы, которые можно использовать совместно с ANSYS/ Multiphysics или автономно, являются:
• ANSYS/FLOTRAN - позволяет выполнять решение задач гидроаэродинамики, включая ламинарное и турбулентное течение несжимаемых или сжимаемых потоков;
• ANSYS/Emag - используется для моделирования электромагнитных полей;
• ANSYS/DYNA - предназначена для решения прочностных задач динамики с учетом больших нелинейностей, среди которых могут быть задачи поведения изделия при столкновениях и ударах, при конечных деформациях, а также задачи нелинейного поведения материала и т.п.
ANSYS/LS-DYNA PrePost обладает всеми средствами подготовки данных для решения и обработки полученных результатов.
Компанией SAMTECH в сотрудничестве с Лабораторией аэрокосмических технологий Льежского университета разработана универсальная система анализа SAMCEF [6], все расчетные модули которой связаны с единым графическим пре- и постпроцессором ВАСОN.
Универсальная комплексная система программ SAMCEF также имеет модульную структуру, включая:
• THERNL - нелинейный температурный анализ стационарных и переходных режимов; расчет задач электропроводности, конвекции, излучения. Исследования электрических и тепловых явлений, связанных с ударом молнии или искровым разрядом;
• ASEF - линейный статический анализ с учетом нелинейных условий;
• SPECTRAL - расчет случайных характеристик усталостных разрушений, базирующийся на спектральном анализе;
• REPDYN - анализ переходных, гармонических и сейсмических процессов;
• STABI - определение условий потери устойчивости конструкции;
•DYNAM - расчет собственных частот упругих систем;
Среди дополнительных разработок этой фирмы можно выделить следующие программы:
• FOURIER - линейный статический анализ задач Фурье;
•MECANO/STRUCTURERE - новая программная среда, открывающая возможности совместного нелинейного анализа структуры и податливости элементов механизмов. Впервые была использована для исследования авиационной и космической техники;
•COMPOSITIES - база данных композитных материалов;
•ROTOR - уникальный инструмент динамического анализа вращательных механизмов;
• BOSS/QUATTRO - пакет предназначен для оптимизации работы программной среды SAMCEF и др.
Основные программные разработки фирмы MSC это:
• MSC.NASTRAN - анализ линейной и нелинейной статики и динамики, устойчивости, теплопередачи, акустики, аэроупругости, оптимизации конструкций;
• MSC.PATRAN - интегрированная среда систем моделирования, анализа и проектирования на основе современного графического пользовательского интерфейса;
• MSC.DYTRAN - анализ высоконелинейных быстротекущих динамических процессов. Столкновение конструкций с разрушением, попадание предметов в авиадвигатель, обрыв лопатки, взрывы, штамповка металла и т.д.;
• MSC.MARC - комплексный нелинейный анализ конструкций и решение сложных задач термопрочности;
• MSC.FATIGUE - новые методы анализа ресурса и долговечности. Усталость, появление и рост трещин, оптимизация конструкции по критерию долговечности;
• MSC.CFDesign - газо- и гидродинамика в среде MSC. NASTRAN. Задачи течения жидкости и газа с учетом тепловых процессов;
• MSC.Working FEA - прочностные расчеты в пакетах AutoCAD, SolidWorks и SolidEdge;
• MSC.NVII_Manager - комплексный анализ акустики, вибраций и устойчивости автомобиля;
• MSC.AMS - пре- и постпроцессор для моделирования конструкции автомобиля;
• MSC.Flight Load&Dynamics - комплексный анализ аэроупругих, динамических и прочностных характеристик летательных аппаратов;
• MSC.MVISION - данные о свойствах материалов.
Пакет ADAMS (фирма Mechanical Dynamics, Inc.) используется для динамического и кинематического анализа сложных механических схем механизмов, статического и модального анализа. С помощью этого пакета могут решаться задачи, например, стыковки космических аппаратов, динамики полета и посадки и т.п. Двусторонняя связь с конечно-элементными пакетами (ANSYS, MSC. NASTRAN, ABAQUS, I-DEAS) позволяет встраивать неограниченное число конечно-элементных моделей в механизм для учета влияния деформируемости на поведение системы. В ADAMS обеспечен обмен информацией с CAD-системами и пакетами математических методов (MATLAB, MATRIX, EASY5).
Краткий перечень возможностей универсальных программ показывает, что в них наиболее полно разработаны различные виды инженерного анализа, включая: статический и динамический анализ, анализ устойчивости, нелинейный температурный анализ (в том числе с учетом процесса фазового перехода или химических реакций), спектральный анализ, статический анализ циклических структур, расчет электрического поля и др. Универсальные программы используются при проектировании изделий машиностроения, судостроения, аэрокосмической и электротехнической отраслей для решения таких специфических задач, как нелинейный теплообмен (с переходным или стационарным режимом, включая воздействие радиации), структурная оптимизация, анализ упругих механизмов, усталостные разрушения, анализ явлений вязкопластичности и др. Многоцелевая направленность этих программ дает возможность применять их для решения даже таких смешанных задач, как анализ прочности при тепловом нагружении, влияние магнитных полей на прочность конструкции, тепломассоперенос в электромагнитном поле. Программы позволяют учитывать разнообразные конструктивные нелинейности, наличие больших деформаций, получать решение задач гидроаэродинамики и др.
В универсальные программы анализа включены собственные средства построения геометрической модели изделия. Однако возможности геометрического моделирования этих пакетов намного слабее по сравнению с программными системами проектирования, так как с их помощью могут решаться задачи твердотельного моделирования сравнительно простых форм.
Все универсальные программы анализа имеют стандартные форматы обмена графической информацией с пакетами конструирования. При необходимости геометрическая модель проектируемого изделия может быть предварительно создана на этапе конструирования в СAD-системе.
Третью группу программ составляют многочисленные специализированные программы. К их числу можно отнести:
• пакет MSC.SuperForge (фирма MSC) - предназначен для объемного моделирования процессов штамповки и ковки. Результаты анализа могут быть использованы для проектирования оснастки и технологических процессов. Кроме американской фирмы MSC, признанными лидерами в области моделирования процессов штамповки и ковки также являются американская компания SFTC (система DEFORM), французская компания TRANVALOR (система FORGE) и российская фирма «Квантор-Софт» (система Qform).
В области разработки программных сред инженерного анализа значительные результаты получены российскими фирмами. Приведем примеры пакетов, фирм, выполнивших разработку, и перечень основных задач, решаемых с их помощью:
•Euler (Автомеханика) - динамический анализ многокомпонентных механических систем;
•ИСПА (АЛЕКСОФТ) - расчет и анализ на прочность;
• ПОЛИГОН (ЦНИИ материалов) - система моделирования литейных, гидродинамических, тепловых и усадочных процессов в ЗD-постановке;
• РИМАН (ПроПроГруппа) - расчет и анализ напряженно-деформированного состояния конструкций, решение упругих и пластических задач, в том числе штамповки и ударных напряжений;
• АРМ WinMachine (НТЦ АПМ) - комплекс программ для проектирования и расчетов деталей машин, анализа напряженно-деформированного состояния конструкций и их элементов;
• ДИАНА (НИЦ АСК) - анализ конструкций и их элементов;
• GasDinamics Tool (Тульский государственный университет) - моделирование газодинамических процессов и др.
К сожалению, многие из перечисленных пакетов не имеют стандартных интерфейсов, и их использование в сквозных процессах проектирования проблематично.
Для исследования динамических процессов, протекающих в системах автоматического регулирования и управления, а также для решения других задач анализа, широкое применение находят специальные программные комплексы MATRIX, Simulink, VisSim, EASY5, МВТУ, составляющие четвертую группу программ.
Дата добавления: 2015-12-08; просмотров: 3325;