В пищевых продуктах

 

Отбор проб пищевых продуктов производится в соответствии с требовани­ями ГОСТов на отдельные виды пищевых продуктов и сырья. Средняя лабора­торная проба подготавливается таким образом, чтобы ошибки, обусловленные неоднородностью пищи по объему, были минимальными.

В большинстве продуктов питания металлы невозможно определить, не разрушая органическую матрицу вещества. Удаление органических соединений из продуктов называют минерализацией образца и проводят с использованием различных методов окисления. Существует три основных способа подготовки образцов пищевых продуктов к определению токсичных элементов: сухая мине­рализация, мокрая минерализация и кислотная экстракция (ГОСТ 26929-94).

Способ сухой минерализации основан на полном разложении органичес­ких веществ путем сжигания пробы сырья или продукта в электропечи при кон­тролируемом температурном режиме и предназначен для всех видов продоволь­ственного сырья и продуктов, кроме продуктов с содержанием жира 60 % и бо­лее. Этот метод применим при определении большинства токсичных элементов, за исключением ртути и мышьяка.

Тигель с анализируемой пробой помещают на сетку из огнеупорной глины и нагревают на слабом огне для начального разложения органического вещес­тва. Затем тигель переносят в муфельную печь, где проводят сжигание при ре­гулируемой температуре 400-600 °С. Для ускорения разложения органических веществ, особенно с низким содержанием золы, рекомендуется использовать ве­щества, катализирующие процесс озоления, такие как азотная кислота или неко­торые соли. Полученную золу растворяют в определенном объеме разбавленной соляной кислоты или смеси разбавленных соляной и азотной кислот. Образовав­шийся раствор используют для дальнейшего определения.

Преимуществами способа сухой минерализации являются возможность ана­лиза больших количеств вещества, что важно при анализе токсичных элементов, содержащихся в продукте на уровне ПДК, а также отсутствие опасности загряз­нения анализируемого продукта реактивами. Метод не требует анализа большого количества контрольных проб и постоянного внимания рабочего персонала.

К недостаткам следует отнести возможность потерь анализируемых эле­ментов вследствие летучести (особенно при работе с медью, селеном, кадмием, сурьмой, мышьяком, ртутью) или взаимодействия с материалом, из которого из­готовлен тигель. Чрезмерное нагревание соединений некоторых металлов, на­пример олова, может привести к потере растворимости, что сделает невозмож­ным их дальнейшее определение.

Способ мокрой минерализации основан на полном разрушении органи­ческих веществ пробы продукта при нагревании с серной и азотной концентри­рованными кислотами с добавлением перекиси водорода или хлорной кислоты в качестве катализаторов и предназначен для всех видов сырья и продуктов, кро­ме сливочного масла и животных жиров.

При мокрой минерализации потери вещества за счет летучести минималь­ны, поэтому значительно увеличивается полнота извлечения металлов. Преиму­ществом также является высокая скорость процесса окисления по сравнению с сухой минерализацией.

Однако существует ряд недостатков, ограничивающих применение данного способа подготовки проб. В частности, метод позволяет сжигать только малые объемы образца. При этом расход реактивов достаточно большой, что может при­вести к завышению данных контрольных опытов. Кроме того, мокрая минерали­зация является потенциально опасным методом и во избежание взрывов требует постоянного контроля.

Способ кислотной экстракции (неполной минерализации) предназначен для растительного и сливочного масел, маргарина, пищевых жиров и сыров. Он основан на экстракции определяемых токсичных элементов из пробы продукта путем кипячения его с разбавленной соляной или азотной кислотой.

Выбор способа минерализации зависит от природы определяемого металла и анализируемого продукта, а также от метода определения элемента на конеч­ной стадии анализа.

В настоящее время для определения токсичных элементов в лаборатори­ях контроля качества и безопасности пищевых продуктов применяют атомную спектроскопию, полярографию и спектрофотомерию.

Метод атомной спектроскопии включает две разновидности, основанные на явлениях атомной эмиссии и атомной абсорбции. Раствор минерализата испы­туемой пробы распыляют в воздушно-ацетиленовом или воздушно-пропановом пламени. Металлы, находящиеся в растворе минерализата, попадая в пламя, пе­реходят в атомное состояние. Сталкиваясь со свободными радикалами пламени, некоторые атомы металлов переходят в возбужденное состояние. Возвращаясь в нормальное состояние, атом излучает энергию, характерную для исследуемого металла. Это явление лежит в основе атомно-эмиссионной спектрометрии.

 

Однако даже в высокотемпературном пламени возбуждается лишь неболь­шая доля атомов. Невозбужденные атомы можно заставить поглощать излучение от наружного источника с собственной резонансной длиной волны, т. е. с длиной волны, которую анализируемые атомы излучают при возбуждении. Часть этого излучения поглощается атомами исследуемого элемента, причем величина по­глощения пропорциональна концентрации определяемого элемента в растворе. Это явление лежит в основе метода атомно-абсорбционной спектрометрии.

Для анализа токсичных элементов, нормируемых в пищевых продуктах и требующих подтверждения при обязательной сертификации, обычно приме­няют метод атомно-абсорбционной спектрометрии, так как он отличатся высо­кой чувствительностью, воспроизводимостью и селективностью. Данный метод наиболее удобен для определения металлов, таких как свинец, кадмий, цинк, медь, хром и др. Применение этого метода для анализа ртути и мышьяка требует небольшой модификации оборудования. Так, для определения ртути применя­ют технику холодного испарения. Ионы ртути Hg2+ из анализируемого раство­ра минерализата подвергают восстановлению хлоридом олова до молекулярной формы ртути Hg°, которая, испаряясь, накапливается в специальной абсорбцион­ной ячейке. В данном случае измеряют интенсивность излучения, поглощенного парами ртути. Мышьяк из соединений, присутствующих в минерализате, вос­станавливают до летучего производного мышьяка — арсина, после чего изме­ряют степень поглощения характеристического излучения парами арсина. Для реализации методов определения мышьяка и ртути разработаны специальные приставки к измерительному оборудованию, в которых в автоматическом режи­ме протекают процессы восстановления определяемых элементов до летучих соединений и их испарения.

Широко используются также полярографические методы определения токсичных элементов, в первую очередь из-за значительно более низкой стои­мости оборудования по сравнению с оборудованием для атомно-абсорбционной спектрометрии. Полярографический метод основан на том, что различные ме­таллы осаждаются из раствора на катоде при различных электрических потенци­алах. Каждый металл имеет характеристический потенциал полуволны, который используется для идентификации. Высота волны является мерой концентрации определяемого элемента. Этот метод особенно удобен для одновременного опре­деления нескольких тяжелых металлов, однако является более трудоемким, тре­бует большой аккуратности при подготовке проб и выполнении анализа.

Спектрофотометрия находит широкое применение для анализа токсич­ных элементов, особенно в лабораториях, где не требуется проводить большое количество анализов по определению металлов, а затраты на приобретение атомно-абсорбционного спектрометра считаются неоправданными. Преимущества спектрофотометрических методов — простота, дешевизна, как правило, высо­кая чувствительность. К недостаткам следует отнести невысокую селективность определения в ряде случаев.








Дата добавления: 2015-12-08; просмотров: 3418; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2022 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.