Уравнения равновесия элементарного параллелепипеда и элементарного тетраэдра
Выделим у исследуемой точки А (с координатами х, у и z) напряженного упругого тела тремя взаимно перпендикулярными парами плоскостей элементарный параллелепипед с размерами ребер dx, dy и dz (рис. 2). По каждой из трех взаимно перпендикулярных граней, примыкающих к точке А (ближайших к плоскостям координат), будут действовать три составляющих напряжения - нормальное и два касательных. Считаем, что по граням, примыкающим к точке А, они положительны.
При переходе от грани, проходящей через точку А, к параллельной грани напряжения меняются и получают приращения. Например, если по грани CAD, проходящей через точку А, действуют составляющие напряжения = f1 (x,y,z), =f2(x,y,z,), =f3 (x,y,z,), то по параллельной грани, вследствие приращения только одной координаты х при переходе от одной грани к другой, будут действовать составляющие напряжения Можно определить напряжения на всех гранях элементарного параллелепипеда, как показано на рис. 3.
Кроме напряжений, приложенных к граням элементарного параллелепипеда, на него действуют объемные силы: силы веса, инерционные. Обозначим проекции этих сил, отнесенных к единице объема, на оси координат через X, У и Z. Если приравнять нулю сумму проекций на ось х всех нормальных, касательных и объемной сил, действующих на элементарный параллелепипед, то после сокращения на произведение dxdydz получим уравнение
.
Составив аналогичные уравнения проекций сил на оси у и z, напишем три дифференциальных уравнения равновесия элементарного параллелепипеда, полученных Коши,
. (1.2)
При уменьшении размеров параллелепипеда до нуля он превращается в точку, а и представляют собой составляющие напряжения по трем взаимно перпендикулярным площадкам, проходящим через точку А.
Если приравнять нулю сумму моментов всех сил, действующих на элементарный параллелепипед, относительно оси xc, параллельной оси х и проходящей через его центр тяжести, получим уравнение
или, с учетом того, что второй и четвертый члены уравнения высшего порядка малости по сравнению с остальными, после сокращения на dxdydz
или .
Составив аналогичные уравнения моментов относительно центральных осей уc и zc , получим три уравнения закона парности касательных напряжений
, , .(1.3)
Этот закон формулируется так: касательные напряжения, действующие по взаимно перпендикулярным площадкам и направленные перпендикулярно к линии пересечения площадок, равны по величине и одинаковы по знаку.
Таким образом, из девяти составляющих напряжений матрицы тензора шесть попарно равны друг другу, и для определения напряженного состояния в точке достаточно найти лишь следующие шесть составляющих напряжений:
.
Но составленные условия равновесия дали нам всего лишь три уравнения (1.2), из которых шесть неизвестных найдены быть не могут. Таким образом, прямая задача определения напряженного состояния в точке в общем случае статически неопределима. Для раскрытия этой статической неопределимости необходимы дополнительные геометрические и физические зависимости.
Рассечем элементарный параллелепипед у точки А плоскостью, наклоненной к его граням; пусть нормаль N к этой плоскости имеет направляющие косинусы l, т и п. Получившаяся геометрическая фигура (рис. 4) представляет собой пирамиду с треугольным основанием - элементарный тетраэдр. Будем считать, что точка А совпадает с началом координат, а три взаимно перпендикулярные грани тетраэдра - с плоскостями координат.
Составляющие напряжения, действующие по этим граням тетраэдра, будем считать положительными. Они показаны на рис. 4. Обозначим через и проекции полного напряжения pN , действующего по наклонной грани BCDтетраэдра, на оси х, у и z. Площадь наклонной грани BCD обозначим dF. Тогда площадь грани АВС будет dF , грани ACD - dF и грани АDВ - dF .
Рис. 4
Составим уравнение равновесия тетраэдра, спроектировав все силы, действующие по его граням, на ось х; проекция объемной силы в уравнение проекций не входит, так как представляет собой величину высшего порядка малости по сравнению с проекциями поверхностных сил:
,
откуда
.
Составив уравнения проекции сил, действующих на тетраэдр, на оси у и z, получим еще два аналогичных уравнения. В результате будем иметь три уравнения равновесия элементарного тетраэдра
. (1.4)
По известным трем проекциям найдем полное напряжение
. (1.5)
Разделим пространственное тело произвольной формы системой взаимно перпендикулярных плоскостей хОу, yОz и хОz (рис. 5) на ряд элементарных параллелепипедов. У поверхности тела при этом образуются элементарные тетраэдры, (криволинейные участки поверхности ввиду их малости можно заменить плоскостями). В таком случае рN будет представлять нагрузку на поверхности, а уравнения (1.4) будут связывать эту нагрузку с напряжениями и в теле, т. е. будут представлять граничные условия задачи теории упругости. Условия, определяемые этими уравнениями, называют условиями на поверхности.
Рис. 5
Следует отметить, что в теории упругости внешние нагрузки представляются нормальными и касательными напряжениями, приложенными по какому-либо закону к площадкам, совпадающим с поверхностью тела.
Дата добавления: 2015-10-26; просмотров: 2084;