Правило трех сигм
Сформулируем теперь «правило трёх сигм»: практически достоверно, что если случайная величина распределена нормально, абсолютное отклонение ее от математического ожидания не превосходит утроенного среднеквадратического отклонения:
.
Или – вероятность того, что случайная величина отклониться от своего математического ожидания на величину, большую утроенного среднеквадратического отклонения, равна:
.
Смысла в запоминании числа 0,0027 нет никакого, а вот помнить, что почти вся масса нормального распределения сосредоточена в границах , всегда полезно.
Дата добавления: 2015-10-19; просмотров: 686;