Кинетостатический (силовой) расчет шестизвенного
механизма (пример выполнения)
Исходные данные для расчета: ℓОА, ℓАВ, ℓВС - длины звеньев в м; ℓОС-межосевое расстояние в м; ℓУ - расстояние до хода ползуна 5 в м; ℓО1S1, ℓАS2, ℓСS3 - расстояния до центров масс в м; m1, m2, m3, m5 - массы звеньев в кг; φ - угол положения кривошипа.
Определить: Скорости и ускорения всех точек звеньев механизма; R61, R21, R23, R63, R65 – реакции в кинематических парах; Рур- уравновешивающую силу.
Решение.
1. Изображение механизма в масштабе μℓ. Высчитываем масштабный коэффициент по формуле (2.1): μℓ = ℓО1А /ОА = (м/мм). Затем считаем чертежные значения межосевого расстояния ОС = ℓОС/μℓ, расстояния y = ℓy/μℓ и длин звеньев АВ = ℓАВ/μℓ, ВС = ℓВС/μℓ в мм. Откладываем межосевое расстояние ОС и под углом φ проводим длиной ОА положение кривошипа. После этого из точки А проводим дугу, равную радиусу R1=[АВ], а из точки С проводим дугу, равную радиусу R2 = [ВС]. На пересечении этих двух дуг получаем точку В. Далее проводим горизонтальную линию на расстоянии у и отмечаем точку D. Изображаем опоры и кулисный камень (рисунок 3.14, а).
2. Кинематическое исследование механизма (определение скоростей и ускорений всех точек звеньев механизма методом планов).
Кинематический анализ механизма начинается с 1-го (ведущего) звена, т.к. известны его положение и длина. Высчитываем скорость точки А по формуле (2.26)
υА = ω1ℓОА=(м/с),
а затем масштабный коэффициент плана скоростей по формуле (2.30)
μυ = υА/[Рυа] = ( ).
К механизму I класса присоединяется структурная группа 2-3. Она является группой II класса 1 вида. Методика построения плана скоростей и ускорений этой группы рассмотрена в п. 2.4.2, Задача 1. Остановимся кратко. Скорости внешних шарниров А и С известны: υА рассчитана выше, а υС = 0. Для определения скорости точки В запишем векторные уравнения:
υВ = υА+ υВА ^ АВ
υВ = υС + υВС ^ ВС.
Начинаем построение плана скоростей. Из произвольно выбранной точки полюса Рυ проводим вектор скорости υА ^ ОА в сторону угловой скорости ω1 длиной [Рυа]. Затем из точки а проводим линию, перпендикулярную звену АВ, а из точки Рυ – линию, перпендикулярную звену ВС. На пересечении получаем точку в. Вектора направляем к ней (рисунок 3.14, б). Рассмотрим группу 4-5. Она является группой II класса 4 вида. Методика рассмотрена в п. 2.4.2, Задача 4. В точке D соединяется 4 звена. Поэтому будет четыре точки – D3, D4, D5, D6. Скорость υD3 найдем по правилу подобия, т.к. эта точка расположена на продолжении звена ВС. Составим пропорцию по уравнению (2.43)
ℓВС/ℓСD3 = [вс]/[Рυd3].
Выразив отрезок [Рυd3] в мм, отложим его на продолжении вектора Рυd3, так, чтобы порядок букв соответствовал порядку букв на схеме механизма. Далее находим точку D4, скорость которой равна скорости точки D5 (υD4 = υD5). Для этого составляем векторные уравнения:
υD4 = υD3 + υD4D3 êêВD
υD5 = υD6 + υD5D6 êêх-х.
Из точки d3 проводим линию, параллельную ВD, а из полюса (т.к. υD6 = 0) проводим линию, параллельную горизонтальной линии х-х. На пересечении получаем точку d4=d5. Вектора также направляем к найденной точке (рисунок 3.14, б). После построения плана скоростей, высчитываем все действительные значения линейных и угловых скоростей, а также определяем их направления:
υВ = υВC = [Рυв] μυ=
υD5 = [Рυd5] μυ = (м/с);
υВА = [ав] μυ =
υD3D4 = [d3d4] μυ =
ω2 = υ2ВА/ℓАВ =
ω3 = ω4 = υ2ВС/ℓВС = (с-1).
Для определения направления угловых скоростей, нужно векторы относительных скоростей перенести в точку В и мысленно поворачивать звенья АВ и ВС относительно точек А и С. Направление ω2 получилось против часовой стрелки, а ω3 – по часовой стрелке (рисунок 3.14, а).
Начинаем построение плана ускорений. Считаем ускорение точки аА
аА =аnАО =ω12ℓОА =(м/с2).
Затем высчитываем масштабный коэффициент плана ускорений:
μа= аА/[Раа] =
Запишем векторные уравнения ускорений для точки В:
аВ = аА+ аnВА êêАВ + аτВА^АВ
аВ = аС + аnВС êêВС + аτВС^ВС.
Считаем нормальные ускорения в м/с2 по формулам (2.38)
аnВА= υ2ВА/ℓАВ
аnВС = υ2ВС/ℓВС,
а затем вектора нормальных ускорений в мм:
Из произвольно выбранной точки полюса Ра откладываем вектор ускорения точки А параллельно ОА к центру вращения (к точке О) длиной [Раа]. Затем из точки а проводим вектор нормального ускорения аnВА параллельно звену АВ к точке А длиной . Через конец вектора проводим линию действия тангенциального ускорения аτВА перпендикулярно звену АВ. После этого из полюса Ра откладываем вектор нормального ускорения аnВС параллельно звену ВС в сторону к точке С длиной . Через конец вектора проводим линию действия тангенциального ускорения аτВС перпендикулярно звену ВС. На пересечении этих линий действия получаем точку в (рисунок 3.14, в). Точку d3 находим по правилу подобия:
ℓВС/ℓСD3 = [вс]/[Раd3].
Отрезок [Раd3] откладываем на продолжении вектора [Рав]. Для нахождения скорости точки D4,5 составим векторные уравнения
аD4 = аD3 + аKD4D3 + аrD4D3 || ВD
аD5 = аD6 + акD5D6 + аrD5D6 || х-х.
Высчитываем кориолисово ускорения по формулам
акD4D3=2ω4υD4D3; акD5D6 = 0,
а затем чертежные значения
= (мм).
Из точки d3 проводим вектор кориолисова ускорения перпендикулярно звену ВС длиной , повернув вектор относительной скорости υD4D3 на 90о в сторону ω4. Через конец вектора проводим линию действия релятивного (относительного) ускорения аrD4D3 параллельно звену ВD. Затем из полюса откладываем линию действия относительного ускорения аrD5D6 параллельно горизонтальной оси х-х. На пересечении этих линий действия получаем точку d4,5. Высчитываем действительные значения всех ускорений:
аВ = [Рав]μа = (м/с2);
аD5 = [Раd5]μа = (м/с2);
аτВА = [nВАв]μа = (м/с2);
аτВС = [nВСв]μа= (м/с2);
ξ2 = аτ ВА/ℓАВ = (с-2);
ξ3 = аτВС/ℓВС = (с-2).
Для определения направления угловых ускорений, нужно вектора тангенциальных ускорений мысленно перенести в точку В на схеме механизма и вращать звено АВ относительно точки А, звено ВС относительно точки С. Получается, что ξ2 и ξ3 направлены по часовой стрелке (рисунок 3.14, а).
Определим ускорения центров масс. Сначала отметим точки S1, S2, S3, S5 на схеме механизма. Для этого вычислим расстояния: ОS1 = ℓOS1/μℓ, AS2 = ℓAS1/μℓ, CS3 = ℓCS3/μℓ, S5 = D5. Эти же точки найдем на плане ускорений по правилу подобия, используя соотношение отрезков
т. s5 = т. d5.
Выражаем из этих пропорций отрезки [РаS1], [aS2], [РаS3] и откладываем их на соответствующих векторах плана ускорений (рисунок 3.14, в). Соединяем эти точки с полюсом Ра и высчитываем ускорения центров масс:
aS1 = [РаS1] μа = (м/с2);
aS2 = [РаS2] μа = (м/с2);
aS3 = [РаS3] μа = (м/с2); (3.40)
aS5 = аD5=[Раd5]μа = (м/с2).
После расчетов всех скоростей и ускорений приступаем к выполнению силового расчета, т.е. к нахождению реакций и силы Рур.
а) Схема механизма μℓ = б) План скоростей μυ=
B 2 A υD5D3 d3 υD3 Pυ υA a
ξ3 ω2 d5 υBA
3 ω3 ξ2 1 ω1 υD5 υВ в
C O
6 в) План ускорений μа =.
D у 6 k d3
4 6 Pa
5 d5, S5 S3
nВС
г) Структурная группа 4-5 и ее план сил в
R34 μР1=… S1 S2
Pи5 R65 PP R34
D a nВА
G5 R65
G5 Pи5
μР2 =…
д) Структурная группа 2-3 и ее план сил Rn12
P´и2 P´и3 PP
h3 R63 R12
МРИ2 G3 Rt12
h4 B S2 T2 A Rn63
P´и3 Rn12 R43 G2
МРи3 S3 K3 R63 G2 Rt12 R12 Rt63 P´и2
Rt63 C ж) Рычаг Жуковского μυ=…
h2 h1 Pи5
Rn63 G3 d5 d3
G5
R43
Pυ h1
е) Механизм I класса и его план сил Ри3 h5
R21 μР3 =… PP Ри1
Pи1 R61 Р´и3 s3 s1
A h2 k3 G1
Pур s1 R61 G1 G3 Р´и2
O R21 в s2 t2 a
G2 h4
h1 Pи1 Pур h3 h2
G1
Рисунок 3.14 - Пример силового расчета шестизвенного механизма
3. Силовой (кинетостатический) расчет шестизвенного механизма.
Определяем силы тяжести: G1 = m1g = (H), G2 = m2g = (H),
G3 = m3g = (H), G5 = m5g = (H).
Определяем силы инерции: Ри1 = -m1aS1 = (Н), Ри2 = -m2aS2 = (Н),
Ри3 = -m3aS3 = (Н), Ри5 = -m5aS5 = (Н).
Определяем моменты от сил инерции: МРи2 = -ξ2JS2 = (Нм),
МРи3 = -ξ3 JS3 = (Нм), МРи1 = МРи4 = МРи5 = 0.
Определяем направление моментов. Момент от силы инерции направлен в противоположную сторону угловому ускорению. Т.е.: МРи2 и МРи3 направлены против часовой стрелке (рисунок 3.14, а).
Определяем реакции в кинематических парах. Для этого выполняем структурный анализ (глава 1, §1.7). В данном механизме имеется одна структурная группа II класса 1 вида и одна структурная группа II класса 4 вида. Как указывалось в п. 3.1.4.1, силовой расчет начинаем с последней группы, т.е. с группы 4 вида. Порядок проведения силового расчета данной структурной группы рассмотрен в п. 3.1.4.3, Задача 4. Изображаем структурную группу в том же масштабе и том же положении, что и схема механизма (рисунок 3.14, г). Прикладываем G5 вертикально вниз и Ри5 в обратную сторону вектору аD5. Составляем векторное уравнение плана сил, из которого находим R65 и R34:
, .
Высчитываем масштабный коэффициент плана сил μР1 =Ри5/[Ри5] =(Н/мм). Затем считаем вектор силы тяжести [G5] = G5/μР1 = (Н). Построение начинаем согласно уравнению с вектора G5. К концу вектора G5 прикладываем вектор Ри5. Направление реакций нам известны: R65 направлена вертикально, R34 направлена перпендикулярно звену ВD (глава 3, п. 3.1.4.1). Поэтому из начала построения проводим линию действия R34 перпендикулярно ВD , а из конца Ри5 – линию действия R65 вертикально. Точка пересечения даст начало R34 и конец R65 (рисунок 3.14, г). Определяем действительные значения реакций
R65 = [R65] μР1 = (Н);
R34 = [R34] μР1 = (Н).
Приступаем к силовому расчету структурной группы 1 вида (группа 2-3). Изображаем ее в том же масштабе, что и схема механизма (рисунок 3.14, д). В точке S2 прикладываем G2 вертикально вниз Ри2 в обратную сторону вектору aS2. В точку S3 прикладываем G3 и Ри3. Прикладываем направления моментов. Заменяем момент инерции и силу инерции одной силой, приложенной не в центре масс. Для шатуна имеем: hРи2 = МРи2/Ри2μℓ =(мм); для кулисы - ℓСК3 = ℓСS3+(ЈS3/m3ℓСS3) = (м). Переносим силу Ри2 параллельно самой себе на величину hРи2, получаем замененную силу Р′и2 и точку ее пересечения со звеном АВ (точку Т2). Для нахождения точки приложения Р′и3 необходимо от точки С в сторону к точки В отложить расстояние СК3 = ℓСК3/μℓ = (мм) и перенести силу Ри3 параллельно самой себе в точку К3. По величине и направлению замененные силы будут равны действительным, т.е.:
Р′и2 = РИ2; Р′и3 = Ри3.
Прикладываем реакции: в точках А и С будут действовать нормальные составляющие Rn12 и Rn63, направленные параллельно звеньям, и тангенциальные составляющие Rt12 и Rt63, направленные перпендикулярно звеньям. В точке D будет действовать реакция R43, которая равна по величине реакции R34, но противоположна по направлению: R43 = -R34.
Далее расчет ведем аналогично п. 3.1.4.3, Задача 1. Составляем уравнения моментов каждого из звеньев относительно точки В:
= 0, Rt12 АВ - Р′и2h3 + G2 h1 = 0;
= 0, Rt63 СВ - Р′и3h4 + G3h2 + R43CD = 0.
Из этих уравнений выражаем тангенциальные реакции. Составляем векторное уравнение плана сил:
, .
Высчитываем масштабный коэффициент плана сил
μР2 = Rt12/[Rt12] = (Н/мм).
Построение векторного многоугольника начинаем с реакции Rt12. Далее к концу каждого вектора прибавляем следующий согласно уравнению. Вектора сил переносим параллельно со структурной группы. Дины векторов высчитываются по формуле
[G2] = G2/μР2 = (мм), [Р′и2] = Р′и2/μР2 = (мм) и т.д.
Затем из начала построения проводим линию действия Rn12 параллельно АВ, а из конца построения – линию действия Rn63 параллельно BD. На пересечении получаем точку, которая является началом Rn12 и концом Rn63. Соединяем начало Rn12 с концом Rt12 – получаем вектор реакции R12. Соединяем начало Rt63 с концом Rn63 – получаем вектор R63 (рисунок 3.14, д). Найдем реакцию во внутреннем шарнире R23 (см. п.1.4.3, Задача 1). Составим уравнение:
, .
Находим действительные значения полученных реакций
R12 = [R12]μР2 =
R63 = [R63]μР2 = (Н).
R23 = [R23]μР2 =
Приступаем к силовому исследованию ведущего звена (механизму I класса). Изображаем кривошип с опорой в том же масштабе и положении. В точку S1 прикладываем силу тяжести G1 вертикально вниз и силу инерции Ри1, которая параллельна ускорению aS1, но направлена в противоположную сторону. К точке А прикладываем реакцию R21, которая по величине равна R12, но противоположна по направлению (R21=-R12). В точку А прикладываем и уравновешивающую силу Рур, которая направлена перпендикулярно звену ОА (рисунок 3.14, е). Силовой расчет проводим по 1-му методу (п. 3.1.5). Составляем уравнение моментов относительно точки О:
∑М.О = 0, РурОА - R21h2 + G1h1 = 0,
из которого выражаем уравновешивающую силу Рур. Составляем векторное уравнение механизма I класса:
, .
План сил строим аналогично (см. п. 1.4.3). Соединяя начало вектора силы Рур с концом вектора R21, получаем вектор реакции R61 и находим действительное ее значение
R61 = [R61]μР3 = (Н).
Итак, мы определили реакции в кинематических парах и Рур методом планов. Рассчитаем уравновешивающий момент
Мур=РурℓOA=(Нм)
и мощность двигателя
Nдв= Мурω1 = (Вт).
Теперь выполним проверку определения Рур методом Н.Е.Жуковского.
4. Рычаг Н.Е. Жуковского. Строим план скоростей, повернутый на 90о в сторону вращения угловой скорости (можно в обратную) относительно точки полюса Рυ. Точки s1, s2, s3, t2 и k3 находим по п.2. правила подобия (п. 2.4.2):
ℓOS1/ℓOA=[Рυs1]/[Рυa];
ℓAВ/ℓAS2=[aв]/[as2];
ℓCS3/ℓBC=[Рυs3]/[Рυв];
ℓAВ/ℓAТ2=[aв]/[at2];
ℓCК3/ℓBC=[Рυk3]/[Рυв].
Определяем отрезки [Рυs1], [as2], [Рυs3], [at2], [Раk3] в мм и отмечаем их на соответствующих векторах. Со структурных групп и с механизма I класса параллельно переносим все силы. Силы тяжести G1, G2, G3 прикладываем в точки s1, s2, s3; силу инерции Р′и2 прикладываем в точку t2; Р′и3 – в точку k3; Ри1 – в точку s1; G5 и Ри5 – в точку d5; Р′ур – в точку a. Реакции не прикладываются! Составляем сумму моментов относительно полюса Рυ:
SМРυ= 0, Р′ур[Рυa]+G1h1-G2h2-G3h3+ Р′и2h4+ Р′и3h5+ Ри5[Рυd5] = 0
и выражаем Р′ур. Рассчитаем процент ошибки между двумя методами. Расхождение не должно составлять более 5%:
Δ=(Рур- Р´ур)/ Рур≤5%.
Определяем мощность двигателя
Nдв = Рур υА.= (Вт).
На этом силовой расчет шестизвенного механизма считается законченным.
Дата добавления: 2015-10-19; просмотров: 1061;