Титан и титановые сплавы
Титан - элемент IV группы побочной подгруппы периодической системы, порядковый номер 22, атомный вес 47,9. Химический знак - Ti. Титан открыт в 1795 году и назван в честь героя греческого эпоса Титана. Он входит в состав более чем 70 минералов и является одним из распространенных элементов - содержание его в земной коре составляет примерно 0,6 %. Это металл серебристо-белой окраски. Его температура плавления равна 1665 °С. Коэффициент линейного расширения титана в интервале 20 – 100 °С составляет 8,3×10-6 град-1, а теплопроводность l = 15,4 Вт/(м×К). Он существует в двух полиморфных видоизменениях: до 882 °С в виде a-модификации, обладающей гексагональной плотно-упакованной кристаллической решеткой с параметрами а = 2,95 Å и с = 4,86 Å; а выше данной температуры устойчивой является b-трансформация с объемноцентрированной кубической решеткой (а = 3,31 Å).
Металл сочетает большую прочность с малой плотностью r = 4,5 г/см3 и высокой коррозионной стойкостью. Благодаря этому во многих случаях он обладает значительными преимуществами перед такими основными конструкционными материалами, как сталь и алюминий. Однако из-за низкой теплопроводности затрудняется его применение для конструкций и деталей, работающих в условиях больших температурных перепадов, и при службе на термическую усталость. Металл обладает ползучестью как при повышенных, так и при комнатной температурах. К недостаткам титана как конструкционного материала следует отнести также относительно низкий модуль нормальной упругости.
Металл высокой чистоты обладает хорошими пластическими свойствами. Под влиянием примесей пластичность его резко изменяется. Кислород хорошо растворяется в титане и сильно снижает данную характеристику уже в области малых концентраций. Пластические свойства металла уменьшаются и при добавлении азота. При содержании азота более 0,2 % наступает хрупкое разрушение титана. Вместе с тем кислород и азот повышают временное сопротивление и выносливость металла. В этом отношении они являются полезными примесями.
Вредной примесью является водород. Он резко снижает ударную вязкость титана даже при очень малых концентрациях, за счет образования гидридов. На прочностные характеристики металла водород не оказывает заметного влияния в широком интервале концентраций.
Чистый титан не относится к жаропрочным материалам, так как прочность его резко уменьшается с повышением температуры.
Важной особенностью металла является его способность образовывать твердые растворы с атмосферными газами и водородом. При нагревании титана на воздухе на его поверхности, кроме обычной окалины, образуется слой, состоящий из твердого раствора на основе a-Ti (альфитированный), стабилизированного кислородом, толщина которого зависит от температуры и продолжительности нагрева. Он имеет более высокую температуру превращения, чем основной слой металла, и его образование на поверхности деталей или полуфабрикатов может вызвать хрупкое разрушение.
Титан характеризуется значительной коррозионной стойкостью в атмосфере воздуха, естественной холодной, горячей пресной и морской воде, растворах щелочей, солей неорганических и органических кислот и соединений даже при кипячении. Он стоек по отношению к разбавленным серной, соляной (до 5 %), азотной всех концентраций (кроме дымящейся), уксусной и молочной кислотам, хлоридам и царской водке. Высокая коррозионная стойкость титана объясняется образованием на его поверхности плотной однородной защитной пленки, состав которой зависит от окружающей среды и условий ее образования. В большинстве случаев это диоксид - TiO2. При определенных условиях металл, взаимодействующий с соляной кислотой, может покрываться защитным слоем гидрида - TiH2. Титан устойчив против кавитационной коррозии и коррозии под напряжением.
Начало промышленного применения титана как конструкционного материала относится к сороковым годам двадцатого столетия. В данном качестве титан наибольшее применение находит в авиации, ракетной технике, при сооружении морских судов, в приборостроении и машиностроении. Он сохраняет высокие прочностные характеристики при повышенных температурах и поэтому с успехом применяется для изготовления деталей, подвергающихся высокотемпературному нагреву.
В настоящее время титан широко применяют в металлургии, в том числе в качестве легирующего элемента в нержавеющих и жаростойких сталях. Добавки титана в сплавы алюминия, никеля и меди повышают их прочность. Он является составной частью твердых сплавов для режущих инструментов. Двуокись титана используют для обмазки сварочных электродов. Четыреххлористый титан применяют в военном деле для создания дымовых завес.
В электротехнике и радиотехнике используют порошкообразный титан в качествепоглотителя газов - при нагревании до 500 °С, он энергично абсорбирует газы и тем самым обеспечивает в замкнутом объеме высокий вакуум. В связи с этим его применяют для изготовления деталей электронных ламп.
Титан в ряде случаев является незаменимым материалом в химической промышленности и в судостроении. Из него делают детали, предназначенные для перекачки агрессивных жидкостей, теплообменники, работающие в коррозионно-активных средах, подвесные приспособления, используемые при анодировании различных деталей. Титан инертен в электролитах и других жидкостях, применяемых в гальваностегии, и поэтому пригоден для производства различных деталей гальванических ванн. Его широко употребляют при изготовлении гидрометаллургической аппаратуры для никелево-кобальтовых заводов, так как он обладает высокой стойкостью против коррозии и эрозии в контакте с никелевыми и кобальтовыми шламами при больших температурах и давлениях.
Титан наиболее стоек в окислительных средах. В восстановительных средах он корродирует довольно быстро вследствие разрушения защитной окисной пленки.
Сплавы титана с различными элементами являются более перспективными материалами, чем технически-чистый металл.
Основными легирующими компонентами промышленных титановых сплавов являются ванадий, молибден, хром, марганец, медь, алюминий и олово. Практически же титан образует сплавы со всеми металлами, за исключением щелочноземельных элементов, а также с кремнием, бором, водородом, азотом и кислородом.
Наличие полиморфных превращений титана, хорошая растворимость многих элементов в нем, образование химических соединений, обладающих переменной растворимостью, позволяют получить широкую гамму титановых сплавов с разнообразными свойствами.
Они обладают тремя основными преимуществами по сравнению с другими сплавами: малым удельным весом, высокими химическими свойствами и отличной коррозионной стойкостью. Сочетание легкости с большой прочностью делают их особенно перспективными материалами как заменители специальных сталей для авиационной промышленности, а значительная коррозионная стойкость - для судостроения и химической промышленности.
Во многих случаях применение титановых сплавов оказывается экономически выгодным, несмотря на высокую стоимость титана. Например, применение литых титановых насосов с высочайшей коррозионной стойкостью на одном из предприятий России позволило снизить эксплуатационные расходы на один насос в 200 раз. Таких примеров можно привести немало.
В зависимости от характера влияния, оказываемого легирующими элементами на полиморфные превращения титана при сплавлении, все сплавы делятся на три группы:
1) с a-фазой (алюминий);
2) с b-фазой (хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт, ванадий, молибден, ниобий и тантал);
3) с a + b-фазами (олово, цирконий германий).
Сплавы титана с алюминием имеют меньшую плотность и большую удельную прочность, чем чистый или технически чистый титан. По удельной прочности они превосходят многие нержавеющие и теплостойкие стали в интервале 400 - 500 °С. Эти сплавы обладают более высокой жаропрочностью и наивысшим сопротивлением ползучести, чем многие другие на основе титана. Они также имеют повышенный модуль нормальнойупругости. Сплавы не подвергаются коррозии и слабо окисляются при высоких температурах. Они обладают хорошей свариваемостью, причем даже при значительном содержании алюминия материал шва и околошовной зоны не приобретает хрупкости. Добавка алюминия уменьшает пластичность титана. Наиболее интенсивно это влияние сказывается при содержании алюминия более 7,5 %. Добавка олова в сплавы повышает их прочностные характеристики. При концентрации в них до 5 % Sn заметного снижения пластических свойств не наблюдается. Кроме того, введение олова в сплавы повышает их сопротивляемость окислению и ползучести. Сплавы, содержащие 4 - 5 % Аl и 2 – 3 % Sn, сохраняют значительную механическую прочность до 500 °С.
Цирконий не оказывает большого влияния на механические свойства сплавов, но его присутствие способствует увеличению сопротивления ползучести и повышению длительной прочности. Цирконий является ценным компонентом титановых сплавов.
Сплавы данного типа достаточно пластичны: прокатываются, штампуются и куются в горячем состоянии, свариваются аргоно-дуговой и контактной сваркой, удовлетворительно обрабатываются резанием, обладают хорошей коррозионной стойкостью в концентрированной азотной кислоте, в атмосфере, растворах поваренной соли при цикличных нагрузках и морской воде. Они предназначаются для изготовления деталей, работающих при температурах от 350 до 500 °С при длительных нагрузках и до 900 °С при кратковременных нагрузках. Сплавы поставляются в виде листов, прутков, полос, плит, поковок, штамповок, прессованных профилей, труб и проволоки.
При комнатной температуре они сохраняют кристаллическую решетку, присущую модификации a-титана. В большинстве случаев эти сплавы применяют в отожженном состоянии.
К титановым сплавам с термодинамически устойчивой b-фазой относятся системы, содержащие в своем составе алюминий (3,0 - 4,0 %), молибден (7,0 - 8,0 %) и хром (10,0 - 15,0 %). Однако при этом теряется одно из основных преимуществ титановых сплавов - относительно малая плотность. Это является основной причиной того, что данные сплавы не получили широкого распространения. После закалки с 760 - 780 °С и старения при 450 - 480 °С они имеют временное сопротивление 130 – 150 кГ/мм2, это эквивалентно стали с sв равным 255 кГ/мм2. Однако эта прочность не сохраняется при нагревании, что является основным недостатком указанных сплавов. Они поставляются в виде листов, прутков и поковок.
Наилучшее сочетание свойств достигается в сплавах, состоящих из смеси a- и b-фaз. Непременным компонентом в них является алюминий. Содержание алюминия не только расширяет область температур, при которых сохраняется стабильность a-фазы, но и повышает термическую устойчивость b-составляющей. Кроме того, этот металл уменьшает плотность сплава и тем самым компенсирует увеличение данного параметра, связанное с введением тяжелых легирующих элементов. Они обладают хорошей прочностью и пластичностью. Из них изготовляют листы, прутки, поковки и штамповки.Детали из таких сплавов можно соединять точечной, стыковой и аргоно-дуговой сваркой в защитной атмосфере. Они удовлетворительно обрабатываются резанием, обладают высокой коррозионной стойкостью во влажной атмосфере и в морской воде, обладают хорошей термической стабильностью.
Иногда, кроме алюминия и молибдена, в сплавы добавляется небольшое количество кремния. Это способствует тому, что сплавы в горячем состоянии хорошо поддаются прокатке, штамповке и ковке, а также увеличивается сопротивление ползучести.
Сплавы, содержащие, кроме алюминия и молибдена, хром, имеют высокую термическую стабильностью и меньшую склонностью к проявлению хрупкости при нагревании, мелкозернисты по своей структуре.
Широкое применение находит карбид титана TiC и сплавы на его основе. Карбид титана обладает большой твердостью и очень высокой температурой плавления, что и определяет основные области его применения. Его давно применяют как компонент твердых сплавов для режущих инструментов и штампов. Типичными титансодержащими твердыми сплавами для режущего инструмента являются сплавы Т5К10, Т5К7, Т14К8, Т15К6, ТЗ0К4 (первая цифра соответствует содержанию карбида титана, а вторая - концентрации цементирующего металлического кобальта в %). Карбид титана применяют также в качестве абразивного материала как в порошке, так и в цементированном виде. Его температура плавления выше 3000 °С. Он обладает большой электропроводностью, а при низких температурах - сверхпроводимостью. Ползучесть данного соединения мала вплоть до 1800 °С. При комнатной температуре он хрупок. Карбид титана стоек в холодных и горячих кислотах - соляной, серной, фосфорной, щавелевой, на холоде - в хлорной кислоте, а также в их смесях.
Большое распространение получили жаростойкие материалы на основе карбида титана, легированного молибденом, танталом, ниобием, никелем, кобальтом и другими элементами. Это позволяет получить материалы, в которых сочетаются большая прочность, сопротивляемость ползучести и окислению при высоких температурах карбида титана с пластичностью и сопротивлением тепловому удару металлов. На этом же принципе основано получение жаростойких материалов на основе других карбидов, а также боридов, силицидов, которые объединяются под общим названием керамико-металлических материалов.
Сплавы на основе карбида титана сохраняют достаточно высокую жаропрочность до 1000 – 1100 °С. Они обладают высокой износоустойчивостью и стойкостью против коррозии. Ударная вязкость сплавов мала, и это является основным препятствием для широкого их распространения.
Карбид титана и сплавы на его основе с карбидами других металлов применяют в качестве огнеупорных материалов. Тигли из карбида титана и сплава его с карбидом хрома не смачиваются и практически не взаимодействуют в течение длительного времени с расплавленным оловом, висмутом, свинцом, кадмием и цинком. Не смачивают карбид титана расплавленная медь при 1100 - 1300 °С и серебро при 980 °С в вакууме, алюминий при 700 °С в атмосфере аргона. Сплавы на основе карбида титана с карбидом вольфрама или тантала с добавкой до 15 % Со при 900 – 1000 °С в течение длительного времени почти не поддаются действию расплавленного натрия и висмута.
Вопросы для самопроверки
1. Каковы характерные физические, механические и химические свойства титана?
2. Перечислите постоянные примеси в составе титана. Какие из них наиболее опасны для металла и почему?
3. Назовите области применения чистого титана.
4. Укажите с какими элементами периодической системы титан не образует сплавов?
5. Опишите характерные свойства титановых сплавов и перечислите сферы их практического использования.
6. Назовите основные s-, b- и s + b-сплавы титана, в чем их отличие, где их применяют?
7. Какие легирующие элементы расширяют области s- и b-фазы?
8. Какие свойства карбида титана определяют основные сферы его использования? Назовите первостепенные области применения карбида титана.
9. Перечислите металлы, являющиеся легирующими для карбида титана. Какими свойствами обладают образующиеся при этом сплавы?
10. Где применяют сплавы на основе карбида титана?
Дата добавления: 2015-09-21; просмотров: 1917;