Колебательный контур

В электрической цепи, состоящей из последовательно соединенных конденсатора С, катушки индуктивности L и омического сопротивления R (рис. 6.1), могут возникать электромагнитные колебания. Поэтому такую цепь называют колебательным контуром.

Ток, текущий в колебательном контуре, является переменным i = f (t). Закон Ома и вытекающие из него правила Кирхгофа были установлены для постоянного тока. Однако они остаются справедливыми для мгновенных значений переменного тока и напряжения, если только их изменения происходят не слишком быстро.

Если мгновенные значения I и U во всех сечениях цепи будут практически одинаковыми, то такие токи называются квазистационарными.

Рассмотрим колебания, происходящие в идеализированном контуре, сопротивление которого пренебрежимо мало (R ≈ 0). Для возбуждения в контуре колебаний конденсатор предварительно заряжают, сообщая его обкладкам заряды ±q. При этом вся энергия колебательного контура сосредоточена в конденсаторе и равна . Если замкнуть конденсатор на катушку индуктивности, он начнет разряжаться, и в контуре потечет возрастающий со временем ток I. Электрическая энергия конденсатора начнет превращаться в магнитную энергию катушки . Когда конденсатор полностью разрядится, ток в цепи достигнет максимума. С этого момента ток, не меняя направление, начнет убывать, но из-за ЭДС самоиндукции он прекратится не сразу.

В колебательном контуре (Рис. 6.1) будут происходить свободные электромагнитные колебания.

Рассмотрим идеальный случай: R = 0.

1 стадия: В начальный момент времени t = 0 зарядим конденсатор.

2 стадия: Замкнув конденсатор на катушку, конденсатор начнет разряжаться и в контуре потечет ток. Из-за явления самоиндукции ток в контуре постепенно увеличивается и сила тока I достигнет максимума в момент времени t = Т/4, когда заряд на конденсаторе станет равным нулю q = 0. Энергия электрического поля будет уменьшаться, но зато возникает всё возрастающая энергия магнитного поля. Т.к. R = 0, энергия не расходуется на нагревание проводов и полная энергия сохраняется:

t = 0 t = Т/4 t = Т/2 t = ¾Т t = Т

 

U = max U = 0 U = max U = 0 U = max

I = 0 I = max I = 0 I = max I = 0

3 стадия: Далее ток I уменьшается из-за явления самоиндукции, и когда U = max, I = 0.

4 и 5 стадии: Затем те же процессы протекают в обратном направлении, после чего система приходит в первоначальное состояние.

Таким образом, периодически изменяются q, U, I. Колебания сопровождаются взаимными превращениями энергии электрического и магнитного полей.

Найдем уравнение колебаний идеального колебательного контура:

.

Учитывая, что получим где -собственная частота:

(6.1)

– дифференциальное уравнение собственных колебаний (R = 0).

- формула Томсона.

Решение уравнения (6.1):

q = qmSin0 t + α). (6.2)

(6.3)

. (6.4)

Таким образом, ток опережает по фазе напряжение на конденсаторе на π/2.

 








Дата добавления: 2015-09-18; просмотров: 947;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.