Дуговой разряд. 1 страница

Дуговой разряд был открыт в 1802 году профессором физики В.Петровым. Он получил разряд в виде светящейся дуги, раздвигая два угольных электрода, предварительно приведенные в соприкосновение и присоединенные к мощной батарее гальванических элементов. В месте контакта сопротивление цепи высокое и происходит сильный разогрев, угли раскаляются. В результате возникает термоэлектронная эмиссия из катода. Электроны бомбардируют анод, образуя в нем углубление – кратер. Температура анода около 4000 К, при 20 атм она может подняться до 7000 К. Сила тока достигает десятков и сотен ампер, а напряжение на разрядном промежутке составляет несколько десятков вольт. Этот тип дугового разряда применяется для сварки и резки металлов.

4. Плазмой называют сильно ионизованный газ, в котором концентрации положительных ионов и отрицательных электронов практически одинаковы. Плазма может быть высокотемпературной, полученной при высоких температурах термической ионизацией атомов, например, при термоядерном синтезе или в области дугового разряда. Газоразрядная низкотемпературная плазма возникает в электрическом поле.

Плазма имеет сходство с обычными газами и подчиняется газовым законам. Однако по электропроводности она приближается к металлам, для нее характерно сильное взаимодействие с электрическими и магнитными полями. Наличие подвижных разноименно заряженных частиц сопровождается их рекомбинацией и свечением.

Плазма используется в магнитогидродинамических (МГД) генераторах электрического тока. Низкотемпературная плазма применяется в газовых лазерах и плазменных телевизорах.

 

 

ЛЕКЦИЯ 5

Тема:Магнитное поле в вакууме и в веществе

Вопросы:1) Действие магнитного поля на проводник с током. Магнитная

индукция.

2) Магнитное поле проводника с током. Закон Био-Савара-Лапласа.

3) Контур с током в магнитном поле.

4) Работа в магнитном поле.

 

1. В 1820 году Ампер открыл действие тока на магнитную стрелку: при пропускании тока через проводник расположенная рядом с ним магнитная стрелка поворачивается перпендикулярно к проводнику. Опыты Ампера показали, что проводники с током притягиваются друг к другу, если токи в них текут в одну сторону, и отталкиваются, если токи текут в противоположных направлениях. Таким образом, было установлено, что вокруг проводников с током существует магнитное поле. Обнаружить его можно по действию на проводник с током или постоянный магнит.

Пусть в однородном магнитном поле помещен прямой проводник длиной l с током I (рис.5.1).

Рис.5.1

 

Из опытов было установлено, что на проводник со стороны магнитного поля действует сила (сила Ампера)

F = I l B sinα,

где α – угол между проводником и направлением магнитного поля.

Направление силы можно определить по правилу левой руки (если четыре пальца расположить по направлению тока, а силовые линии магнитного поля будут входить в ладонь, то отогнутый большой палец покажет направление силы).

Если угол α между направлениями вектора В и тока в проводнике отличен от 90°, то для определения направления силы более удобно пользоваться правилом буравчика: воображаемый буравчик располагается перпендикулярно плоскости, содержащей вектор В и проводник с током, затем его рукоятка поворачивается от направления тока к направлению вектора В. Поступательное перемещение буравчика будет показывать направление силы. Правило буравчика часто называют правилом правого винта.

Рис.5.2

 

Сила Ампера зависит как от силы тока, так и от магнитного поля. Величина В называется магнитной индукцией и служит основной силовой характеристикой магнитного поля.

Если положить I = 1 А, l = 1 м, α = 90º, то B = F. Отсюда вытекает физический смысл В. Магнитной индукцией В называется физическая величина, численно равная силе, с которой магнитное поле действует на прямой проводник единичной длины с током единичной силы, расположенный перпендикулярно к силовым линиям магнитного поля.

Единица измерения магнитной индукции: [B] = Н/А·м = Тл (тесла).

Теперь становится понятным, почему два проводника с током притягиваются или отталкиваются: в зависимости от направления токов магнитное поле одного проводника выталкивает или втягивает другой проводник с током.

 

 

Рис.5.3

 

Магнитное поле удобно изображать с помощью силовых линий. Представление о таких линиях дает расположение железных опилок возле полюсов постоянного магнита.

 

 

Рис.5.4

 

Линией магнитной индукции (силовой линией) называется такая линия, проведенная в магнитном поле, касательная к которой в любой точке совпадает с вектором магнитной индукции в этой точке. Линии магнитной индукции замкнуты и охватывают проводник с током. Тот факт, что силовые линии не имеют начала, говорит об отсутствии магнитных зарядов.

Рис.5.5

 

Направление силовых линий определяется по правилу буравчика: если ввинчивать буравчик так, чтобы винт двигался по направлению тока, то направление движения рукоятки совпадет с направлением силовой линии. Густота силовых линий пропорциональна величине магнитной индукции. Вблизи проводника с током магнитное поле неоднородно, чем ближе к проводнику, тем поле сильнее и силовые линии гуще. Однородное магнитное поле можно создать внутри длинной катушки с током.

Как видно из рисунка 5.6, магнитное поле катушки с током аналогично магнитному полю постоянного магнита, т.е. имеет «северный» конец N, из которого выходят силовые линии, и «южный» S, в который силовые линии входят. Индикаторные магнитные стрелки ориентируются по направлению касательных к линиям индукции.

 

Рис.5.6

 

Введем понятие – магнитный поток или поток Ф вектора магнитной индукции сквозь площадку S: Ф =В Scosα, где α – угол между нормалью (перпендикуляром) к площадке и магнитной индукцией В.

Единица измерения потока вектора магнитной индукции [Ф] = Тл·м² = Вб (вебер).

Рис.5.7

 

Если поле неоднородное и поверхность не плоская, то ее разбивают на бесконечно малые элементы dS так, что каждый элемент можно считать плоским, а поле однородным. Поток вектора магнитной индукции через элемент поверхности dФ = ВdScosα, а через всю поверхность

2. В результате многих опытов разных ученых был выведен закон Био – Савара – Лапласа, позволяющий рассчитывать магнитную индукцию полей, создаваемых проводниками с током.

 
 

Пусть магнитное поле создается в вакууме элементом dl проводника с током I (рис.5.8).

 
 

Рис.5.8

Тогда величина магнитной индукции в точке, удаленной от проводника на расстояние r определяется по закону Био-Савара-Лапласа, как

,

где величина μ0 = 4π·10 Гн/м называется магнитной постоянной.

Направление вектора dВ перпендикулярно плоскости, в которой лежат dl и r. Вектор dВнаправлен по касательной ксиловой линии, проведенной через рассматриваемую точку поля, в соответствии с правилом буравчика.

Для магнитного поля выполняется принцип суперпозиции: если имеется несколько проводников с током, то магнитная индукция в любой точке равна векторной сумме магнитных индукций, создаваемых в этой точке каждым проводником отдельно. Принцип суперпозиции справедлив и для элементов тока. Применяя совместно закон Био-Савара-Лапласа и принцип суперпозиции, можно определить магнитную индукцию различных проводников с током.


Пример. Магнитное поле в центре кругового проводника с током.

 

Рис.5.9

Магнитные индукции каждого элемента тока dl в центре направлены в одну сторону, перпендикулярную к плоскости контура проводника, и просто суммируются. Это можно понять, если провести через центр силовые линии каждого элемента проводника с током и построить к ним касательные. Направление магнитной индукции кругового проводника с током можно определять и по правилу буравчика: если ввинчивать буравчик, вращая рукоятку по направлению тока, то винт покажет направление магнитной индукции в центре.

Величину магнитной индукции определим по закону Био-Савара-Лапласа

Создаваемые круговыми токами магнитные поля удобно описывать с помощью магнитного момента pm = IS, где I–ток в контуре, а S– площадь, обтекаемая током. За направление магнитного момента принимают направление нормали к плоскости витка, совпадающее с направлением вектора В в центре. Тогда

Можно показать, что магнитная индукция внутри длинной катушки с током (соленоида) B = μ0μnI, где n – число витков на единице длины катушки.

 

3. Поместим проводник, согнутый в виде прямоугольной рамки, в однородное магнитное поле.


Рис.5.10

 

При протекании тока по проводнику на каждую его сторону действует сила со стороны магнитного поля. На верхнюю и нижнюю стороны действуют растягивающие контур силы. На боковые стороны действуют силы F1 = F2 = IBlsin90º, где l - длина боковой стороны. Каждая из этих сил создает вращающий момент М = Fd, где d – плечо силы.

Момент пары сил М = 2Fd.= 2IBld. Из рис.5.10 видно, что . Тогда M = IBlasinα или M = IBSsinα, где S – площадь рамки. Контур с током поворачивается до тех пор, пока его вращающий момент не станет равным нулю, т.е. станет равным нулю угол α. Таким образом, рамка с током в магнитном поле стремиться развернуться перпендикулярно к силовым линиям. Можно связать вращающий момент и магнитный момент контура с током

M = pmBsinα

Вращающий момент перестает действовать, когда магнитный момент контура с током ориентирован вдоль направления магнитной индукции поля.

 
 

Можно показать, что вращающий момент действует в магнитном поле на замкнутый контур любой формы. Если поместить контур с током в неоднородное магнитное поле, то появляется составляющая силы Ампера, втягивающая контур в область более сильного поля.

 
 

Рис.5.11

 

 

3. Магнитное поле может перемещать проводник с током, значит, поле совершает работу. Пусть прямой проводник длиной l под действием однородного магнитного поля переместится на расстояние dx в направлении, перпендикулярном к силовым линиям магнитного поля.


Рис.5.12

 

Работа dA = Fdx = IlBdx. Так как произведение перемещения на длину проводника – это площадь dS, описываемая проводником при движении, то dA = IBdS, или dA = IdФ. Следовательно, работа по перемещению проводника в магнитном поле равна произведению силы тока в проводнике на магнитный поток, проходящий сквозь площадь, описываемую проводником при движении.

 

 

ЛЕКЦИЯ 6

Тема:Действие магнитного поля на движущийся заряд.Магнитное поле в

веществе

Вопросы:1) Сила Лорентца.

2) Движение заряда в магнитном поле.

3) Магнитное поле в веществе.

4) Ферромагнетики.

 

1. Проводник с током создает в окружающем пространстве магнитное поле. Поскольку электрический ток представляет собой направленное движение заряженных частиц, то и любой движущийся заряд создает магнитное поле. Можно записать закон Био-Савара-Лапласа для одного заряда. Для этого преобразуем Idl = jSdl = nqvSdl = Nqv. Здесь j – плотность тока, n - число заряженных частиц в единице объема (концентрация частиц), v - скорость частиц. N – полное число частиц в отрезке dl проводника. Теперь магнитная индукция, создаваемая отрезком проводника с током, может быть представлена как

,

а магнитная индукция поля, создаваемого в вакууме одним зарядом q на расстоянии r от заряда

Рис.6.1

 

Направление силовых линий определяется по правилу буравчика.

Магнитное поле действует на ток, а значит и на каждый заряд должна тоже действовать сила. Выражение для нее получил Г.Лорентц.

 

Рис.6.2

На заряд q, движущийся в магнитном поле со скоростью v действует сила F = qvBsinα, где α – угол между направлением скорости и магнитной индукции. Направление силы для положительного заряда определяется по правилу левой руки или правого винта (вращать от v к B).

Таким образом, между движущимися зарядами существует как электрическое, так и магнитное взаимодействие.

 

2. Пусть частица с зарядом q и скоростью v влетает в однородное магнитное поле перпендикулярно к линиям магнитной индукции B (рис.6.3).

Рис.6.3

 

Сила, действующая на частицу, F = qvBsin90º. Сила перпендикулярна к скорости, значит, она не совершает работы и не меняет энергию и величину скорости частицы. Однако, сила, перпендикулярная к скорости, всегда вызывает центростремительное ускорение и движение по окружности, т.е.

qvB = mv²/R.

Радиус окружности траектории тем больше, чем больше скорость частицы. С увеличением магнитной индукции радиус уменьшается. Он зависит также от удельного заряда q/m частицы.

Период обращения частицы Т = 2πR/v. Подставив выражение для радиуса, получим , т.е. период от скорости не зависит.

Пусть теперь заряженная частица влетает в магнитное поле под углом α к направлению магнитной индукции (рис.6.4).

 

 

Рис.6.4

 

В этом случае скорость частицы v0 можно представить как векторную сумму тангенциальной скорости vt, направленной вдоль В, и нормальной скорости vn, перпендикулярной к В.

vt = v0 cosα, подставив эту скорость в выражение для силы Лорентца, получим F = qvtBsin0º, т.е. F = 0. Значит, вдоль силовой линии сила на частицу не действует и она движется равномерно и прямолинейно в этом направлении.

vn = v0 sinα,. сила Лоренца F = qvnBsin90º вызывает центростремительное ускорение и движение по окружности с радиусом и периодом . В результате частица описывает траекторию в виде цилиндрической спирали с шагом (расстояние между витками спирали, на которое частица перемещается вдоль силовой линии, сделав один полный оборот) f = vt T.

Закономерности движения заряженных частиц в магнитных и электрических полях используются в ускорителях, магнетронах, масс-спектрометрах и др.

 

 

Рис.6.5

 

3. Все вещества состоят из атомов и молекул, движение электронов в которых представляет собой замкнутые молекулярные токи. Каждый из этих токов создает магнитное поле, т.е. обладает магнитным моментом

где I – сила тока, S - площадь, обтекаемая током, n- единичный вектор нормали к плоскости витка с током.

В обычных условиях в результате теплового движения частиц магнитные моменты молекулярных токов разориентированы. Если поместить вещество в магнитное поле, то магнитные моменты частиц частично или полностью ориентируются вдоль внешнего магнитного поля, усиливая его (рис.6.6).

 

Рис.6.6

 

Вещества, способные намагничиваться, называются магнетиками. Магнитное состояние вещества характеризуется вектором намагничения, т.е. магнитным моментом единицы объема вещества

Единица измерения намагниченности – тесла. Для удобства рассмотрения ввели физическую величину Н –напряженность магнитного поля. Это силовая характеристика магнитного поля, связанная с магнитной индукцией соотношением . Она характеризует магнитное поле в вакууме. Из опытов следует, что вектор намагничения пропорционален напряженности магнитного поля , где χ – магнитная восприимчивость вещества.

Полное значение магнитной индукции в магнетике равно

Значит, магнитная индукция в веществе , где μ – магнитная проницаемость вещества. Она показывает, во сколько раз магнитное поле в веществе сильнее, чем в вакууме.

Есть некоторые вещества, у которых μ<1, их называют диамагнетиками (азот, вода, серебро, висмут). У них магнитный момент молекулярных токов устанавливается против поля, что объясняется появлением дополнительного вращения электронных орбиталей (прецессии) в магнитном поле.

У многих веществ μ >1, их называют парамагнетиками (кислород, алюминий и др.). У диамагнетиков и парамагнетиков магнитная проницаемость близка к единице, т.е. они намагничиваются слабо.

На границе раздела двух различных сред с разными значениями магнитной проницаемости линии магнитной индукции преломляются. Нормальная составляющая ветора магнитной индукции не меняется

Вn1 = Вn2

Касательные к границе раздела составляющие индукции испытывают скачок, причем

Из этих формул вытекает закон преломления линий индукции

,

где - угол между линиями магнитной индукции в среде 1 и нормалью к поверхности раздела, а - соответствующий угол в среде 2. Значит, линии индукции, входя в среду с большей магнитной проницаемостью, удаляются от нормали и сгущаются (рис.6.7).

Рис.6.7 а – шар в магнитном поле (μ шара больше μ среды);

б - шар в магнитном поле (μ шара меньше μ среды);

в - железный цилиндр помещен в первоначально однородное

магнитноеполе.

 

4. Есть вещества, которые способны сильно намагничиваться, их магнитная проницаемость имеет величину порядка тысяч единиц и может достигать в специальных случаях миллиона. Такие свойства проявляет железо и его сплавы, поэтому этот класс веществ назвали ферромагнетиками. Свойства ферромагнетиков проявляют и другие металлы (табл.6.1).

Табл.6.1 Ферромагнитные металлы

Металлы ТК, К Is0, 10 Тл
Fe (железо) 1735,2
Co (кобальт)
Ni (никель) 508,8
Gd (гадолиний)
Tb (тербий)
Dy (диспрозий) 1991,8
Ho (гольмий) 3054,6
Er (эрбий) 19,6 1872,6

 

Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры ТК (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов. Иными словами, ферромагнетик — такое вещество, которое при охлаждении ниже определённой температуры приобретает магнитные свойства. Выше точки Кюри ферромагнитные свойства исчезают.

Для ферромагнетиков характерна сильная ориентировка магнитных моментов атомов без внешнего магнитного поля. В результате обменного взаимодействия электронов образуются отдельные области самопроизвольного намагничения – домены. Такие домены были обнаружены на опыте с помощью порошковых фигур. На хорошо отполированную поверхность ферромагнетика помещают слой жидкости с порошком оксида железа. Крупинки оседают в местах неоднородности магнитного поля, то есть у стенок доменов, и границы доменов хорошо видны в микроскопе (рис.6.7).

 

а б в

 

Рис. 6.7 а – без магнитного поля; б – магнитное поле перпендикулярно плоскости чертежа; в – магнитное поле противоположного направления.

 

Направления намагничения в отдельных доменах различны и таковы, что полный магнитный момент ферромагнетика равен нулю. При включении внешнего магнитного поля растут домены, у которых вектор намагничения составляет острый угол с направлением внешнего магнитного поля, а объем доменов с тупым углом уменьшается.

Рис.6.8 Процесс намагничения ферромагнетика: а,б,в – смещение

границ; г и д – вращение вектора намагничения

 

В случае слабых полей (область 1) смещения границ обратимы и точно следуют за изменением поля. При увеличении поля смещения границ доменов делаются необратимыми и невыгодные домены исчезают. Затем при еще большем увеличении поля изменяется направление магнитного момента внутри домена. В очень сильном магнитном поле магнитные моменты всех доменов устанавливаются параллельно полю и ферромагнетик теперь намагничен до насыщения.

Все эти процессы намагничивания происходят с некоторой задержкой, то есть отстают от изменения поля, это явление называется гистерезисом (рис.6.8).

 

Рис.6.9 Петля гистерезиса

 

Если уменьшать магнитное поле, то когда поле Н станет равным нулю, в магнетике наблюдается остаточное намагничение +В. Чтобы полностью размагнитить магнетик, надо приложить магнитное поле противоположного знака –Нс. Это поле называют коэрцитивной силой ферромагнетика.

При циклическом перемагничении ферромагнетика изменение индукции в нем будет изображаться петлей гистерезиса. Работа при циклическом перемагничении пропорциональна площади петли гистерезиса. На нее затрачивается энергия магнитного поля, которая в конечном итоге превращается в тепло.

Вещества с большим остаточным намагничением (алнико, магнико и др.) называются магнитно-жесткими, они используются для изготовления постоянных магнитов. Алнико: 8% Al; 14% Ni; 24% Co;3% Cu;51% Fe.

Вещества с малым остаточным намагничением и малой коэрцитивной силой (пермаллой) называются магнитомягкими, они используются в устройствах переменного тока, например, в сердечниках трансформаторов. Пермаллой: 78% Ni; 22% Fe.

Ферромагнитные металлы нельзя использовать в радиотехнике высоких частот из-за их большой электропроводности и больших потерь энергии на вихревые токи. Для этой цели разработаны ферриты.

Ферриты, химические соединения окиси железа Fe2O3 с окислами других металлов. У многих ферритовсочетаются высокая намагниченность и полупроводниковые или диэлектрические свойства, то есть высокое удельное сопротивление (10² - 10 Ом.см), благодаря чему они получили широкое применение как магнитные материалы в радиотехнике, вычислительной технике.

Поликристаллические ферриты производят по керамической технологии. Из ферритового порошка прессуют изделия нужной формы, которые подвергают затем спеканию при температурах от 900 до 1500 °C на воздухе или в специальной газовой атмосфере. Пленки феррит - фанатов и гексаферритов выращивают методом жидкостной эпитаксии из растворов в расплаве, а также путем разложения паров, например - дикетонатов металлов.

Для защиты приборов и оборудования от вредного влияния электромагнитного излучения других электрических и электронных приборов, а также природных явлений разработан широкий номенклатурный ряд материалов и конфигураций ферритовых сердечников (рис.6.10).

 

 

а б

 

Рис.6.10 а - ферритовые помехоподавляющие сердечники;

б - ферритовые поглощающие пластины для создания

безэховых камер и помещений, защищенных от

прослушивания.

 

 

ЛЕКЦИЯ 7

Тема:Электромагнитная индукция

Вопросы:1) Явление электромагнитной индукции

2) Самоиндукция.

3) Энергия магнитного поля

 

1. Электрические токи создают вокруг себя магнитное поле. В 1831 году М. Фарадей открыл обратное явление: изменяющееся магнитное поле вызывает появление в проводниках тока. Это явление получило название электромагнитной индукции. На рис.7.1 показаны опыты

а б в

 

Рис. 7.1

 

Одна катушка соединена с источником тока, а вторая – с гальванометром. Если катушки неподвижны, то в цепи с гальванометром тока нет. При перемещении катушки или замыкании – размыкании цепи гальванометр показывает наличие тока. Направление индукционного тока при усилении магнитного поля противоположно направлению тока при ослаблении поля; если магнитное поле не меняется, то тока нет. Следовательно, опыты показывают, что причиной появления индукционного тока является изменение магнитного поля.

Закон Ленца: индукционный ток во всех случаях направлен таким образом, что его действие уменьшает причину, вызвавшую этот ток (рис.7.2).

Рис.7.2

 

Фарадей установил количественный закон электромагнитной индукции. Однако, в более общем случае закон был установлен Максвеллом, который проанализировал опыты Фарадея. Возникновение индукционного тока означает, что в проводнике появляется электродвижущая сила, и происходит это, когда проводник пересекает линии магнитной индукции.








Дата добавления: 2015-09-18; просмотров: 1113;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.074 сек.