Парабола. Вывод канонического уравнения. Виды парабол

 

Def. Параболой называют геометрическое место точек плоскости, расстояние от которых до фиксированной точки, называемой фокусом, равно расстоянию до прямой, называемой директрисой.

 

Пусть rрасстояние от точки параболы до фокуса;

dрасстояние от точки параболы до директрисы.

Тогда, по определению, уравнение параболы

.

Получим уравнение параболы, расположенной в плоскости с д.п.с.к. X0Y.

Пусть фокус F принадлежит оси 0X. Директрису проведем перпендикулярно оси 0Х на расстоянии p от фокуса F. Пусть начало координат т.0 – является серединой этого расстояния.

Пусть т. M(x;y) – «текущая» точка параболы.

Пусть r – расстояние от т. M(x;y) до фокуса ;

d – расстояние от т. M(x;y) до директрисы .

 
 

 


По определению параболы .

По теореме Пифагора из прямоугольного ΔF MN:

.

Расстояние от т. M(x;y) до директрисы

.

Таким образом, .

Возведя обе части в квадрат, получим

.

Откуда – каноническое (простейшее) уравнение параболы.

 

Note 1 Дома или на п/з доказать, что парабола – кривая второго порядка.

Так как по определению расстояние , то из уравнения параболы следует, что .

Так как в уравнении параболы ордината «текущей» точки M(x;y) y входит во второй степени, то парабола симметрична относительно оси 0Х. При этом верхнюю и нижнюю части кривой называют ветвями параболы, а начало координат т. О(0;0) – ее вершиной.

 

Note 2 Дома или на п/з обосновать различные виды парабол:

 

Парабола симметричная оси 0Y, .
Парабола симметричная оси 0Y, .
Парабола симметричная оси 0X, .

 

Note 3 Дома или на п/з доказать, что , т.е. для параболы.

 

Note 4 Дома или на п/з (с помощью параллельного переноса системы координат на a по оси и на b по оси 0Y) доказать, что – уравнение параболы с вершиной в т.С(a;b).

 

 
 

 

 


Note 5 Таким образом, основной характеристикой кривой второго порядка является ее эксцентриситет , т.е. если окружность, парабола, гипербола, эллипс.

 

 








Дата добавления: 2015-08-20; просмотров: 2018;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.