Параметры пьезотрансформаторов и методика их расчета

Рассмотрим симметричный ПТ поперечно – продольного типа.

Рисунок 34 – ПТ поперечно-продольного типа 1- входная секция возбуждения 2- выходная генераторная секция U1, U2 – входное и выходное электрические напряжения F1...F3, V1...V3 – силы и колебательные скорости действующие в сечениях пластины в направлении Х.

 

Для случая плоской продольной волны, при условии (b+c)<(l1+l2)/2 можно записать систему уравнений в матричном виде для входной секции возбуждения:

 

где

Z1= - волновое сопротивление секции возбуждения;

- скорость звука в пьезопластине при постоянном электрическом поле

- плотность вещества пьезопластины

I1 – ток, протекающий в входной секции

nφ – коэффициент электромеханической трансформации

 

Аналогично для генераторной секции пьезотрансформатора:

 

где:

Z2= - волновое сопротивление генераторной секции;

- скорость звука в генераторной части пьезопластины при постоянной индукции электрического поля;

I2 – ток, протекающий в выходной генераторной секции.

 

 

Рисунок 35 - Полная схема замещения ПТ

 

Схема замещения для ПТ, работающего на частоте основного резонанса изображена на следующем рисунке.

 

 

Рисунок 36 - Упрощенная схема ПТ

 

Здесь R и X – активная и реактивная составляющие полного механического сопротивления. Параметры данной схемы определяются выражениями:

 

 

 

 

Представленная схема заме­щения состоит из трех частей, соединенных идеальными элек­тромеханическими трансформа­торами с коэффициентами транс­формации nφ и nψ. Первая часть — электрическая, содер­жит эквивалентный генератор с внутренним сопротивлением RГ; третья часть — тоже электрическая, к ней подключена нагрузка RН. Между ними помещена механическая часть в виде комплексного сопротивления. Реактивная часть полного комплексного сопротивления в зависимости от расстройки часто­ты может носить емкостный, индуктивный характер, или обращать­ся в нуль на частоте резонанса. Электрические части схемы заме­щения удобно привести к механической (как показано на рис.), заменив источник ЭДС с внутренним сопротивлением RГна эквивалентный генератор U1с внутренним полным сопротив­лением Z1:

 

Рисунок 37 - Приведенная схема ПТ

 

 

где:

 

 

Анализ эквивалентных схем позволяет определить основные параметры ПТ:

 

;

 

;

 

 

Расчет ПТ специфичен для каждой конкретной области их использования. Например, для поперечно-продольного ПТ ориентировочный расчет сводится (при заданных РВЫХ, Uвых, UBX) копределению толщины (a=UВХ/EBX Д) и длины пластины ( =2UВЫХ/EВЫХ Д) по условиям непревышения допустимых величин напряженности электрического поля, равных EВХ Д 0,2 кВ/см, Евых Д 1,2 кВ/см. Предельно допустимая напряженность поля Ед определяет размеры ПТ, его мощность и надежность. Превы­шение допустимого уровня Ед вызывает необратимые изменения в ПТ — разрушение или деполяризацию (из-за роста потерь). Обычно ПТ работают в силовых режимах, когда Е>>ЕЛ—напряжен­ность поля в линейном режиме работы ПТ (слабые поля). При этом параметры пьезоматериала значительно отличаются от па­раметров, определяемых по ТУ (см. ГОСТ 13927—80). Если учесть, что стабильность параметров пьезокерамики невысока, а отдельные параметры имеют разброс до ±40%, то можно исполь­зовать следующую приближенную методику расчета. Предельно допустимое значение Eд различных пьезокерамических материалов определяет допустимый нагрев тела элемента за счет потерь: ΘД Θ- ΘОКР, где Θ 100 ... 150° С — значение тем­пературы, при которой еще не наступает деполяризация или раз­рушение ПТ; Θокр — температура окружающей среды. Общая по­верхность пластины ПТ Аптвых/2 ΘД, где — поверхностная плотность потерь на 10С ( 1... 1,4*103 Вт/см2 0С — для нор­мальных условий без обдува); РВЫх — мощность ПТ в режиме передачи максимальной мощности. Тогда

 

b=(0.5 Апт - l)/(l+a)

Пределы изменения от нагрузки приближенно можно определить из выражений:

 

 

 

При заданной мощности в нагрузке Rн, т.е. при Pн=Uн Iн, условную габаритную мощность ПТ можно определить по формуле :

 

 

Особенности построения преобразователей напряжения на основе ПТ.

 

Рисунок 38 - Функциональная схема источника питания с пьезотрансформатором.

 

ЗГ – задающий генератор;

УМ – усилитель мощности;

ПТ – пьезотрансформатор;

ЭОС – элементы обратной связи;

УН – выпрямитель или умножитель напряжения;

Uпос – сигнал обратной связи.

 

В качестве УМ используют транзисторные однотактные, двухтактные и мостовые схемы, работающие в ключевых режимах (режим D).

Схемы пьезоэлектронных преобразователей напряжения могут быть неуправляемыми и управляемыми.

 

Ниже представлены несколько принципиальных электрических схем пьезоэлектронных автогенераторов.

(частота автогенератора определяется резонансной частотой ПТ )

 

     
Рисунок 39 - Принципиальные электрические схемы пьезоэлектронных автогенераторов.

 

Стабильность работы автогенераторных каскадов высоковольтных ППН выше, чем низковольтных. Такие ППН легко возбуждаются на требуемой частоте резонанса ПТ и устойчиво работают. Однако у них наблюдается срывы возбуждения, неустойчивый пуск, потеря устойчивости работы при действии возмущений, возбуждение на паразитных типах колебаний.

Сигнал обратной связи может в ППН может сниматься не только с секции ОС, но и с выхода ПТ, его входа.

Пьезоэлектронные преобразователи напряжения с синхронизируемыми ЗГ имеют лучшие показатели.

 

Рисунок 40 - ППН с синхронизируемым задающим генератором.

 

Рабочая частота ЗГ выбирается в отсутствии сигнала Uпос вблизи частоты Fр ПТ. Напряжение Uпос воздействует на ЗГ через элемент обратной связи ЭОС и жестко синхронизирует частоту ЗГ с частотой резонанса ПТ.

 








Дата добавления: 2015-08-14; просмотров: 2332;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.