Механические свойства твердых тел
Изменение взаимного расположения точек тела, которое приводит к изменению его формы и размеров, называют деформацией.
Деформации могут быть вызваны внешними воздействиями (механическими, электрическими или магнитными) или изменением температуры тела. Здесь рассматриваются деформации, возникающие при действии сил на тело.
В твердых телах деформацию называют упругой, если после прекращения действия силы она исчезает. Если же деформация сохраняется и после прекращения внешнего воздействия, то ее называют пластической. Промежуточный случай, т.е. неполное исчезновение деформации, принято называть упругопластической деформацией.
Наиболее простым видом деформации является растяжение (сжатие). Оно, например, возникает в стержне при действии силы, направленной вдоль его оси. Если стержень длиной l при этом удлинился на dl, то e = dl/l является мерой деформации растяжения и называется относительным удлинением.
Другим видом деформации является сдвиг. Сила, касательная к одной из граней прямоугольного параллелепипеда,
вызывает его деформацию, превращая в косоугольный параллелепипед. Угол у называют углом сдвига, a tg g — относительным сдвигом. Так как обычно угол у мал, то можно считать tg g = g.
При действии на тело внешней деформирующей силы расстояние между атомами (ионами) изменяется. Это приводит к возникновению внутренних сил, стремящихся вернуть атомы (ионы) в первоначальные положения. Мерой этих сил является механическое напряжение (или просто напряжение).
Непосредственно напряжение не измеряется. В ряде случаев его можно вычислить через внешние силы, действующие на тело. Косвенно напряжение можно определить по некоторым физическим эффектам
Применительно к деформации растяжения напряжение s можно выразить как отношение силы к площади поперечного сечения стержня Для деформации сдвига напряжение х выражают как отношение силы к площади грани, к которой сила касательна. В этом случае t называют касательным напряжением:
Упругие деформации подчиняются закону Гука, согласно которому напряжение пропорционально деформации. Для двух рассмотренных случаев (растяжение-сжатие и сдвиг) это аналитически записывается так:
где Е — модуль Юнга, a G — модуль сдвига.
Экспериментальная кривая растяжения приведена на рис. Участок ОА соответствует упругим деформациям, точка В — пределу упругости, характеризующему то максимальное напряжение, при котором еще не имеют места деформации, остающиеся в теле после снятия напряжения (остаточные деформации). Горизонтальный участок CD кривой растяжения соответствует пределу текучести — напряжению, начиная с которого деформация возрастает без увеличения напряжения. И наконец, напряжение, определяемое наибольшей нагрузкой, выдерживаемой перед разрушением, является пределом прочности.
Между упругими свойствами кристаллических мономеров и полимерных материалов существует огромная и принципиальная разница. Различие между деформацией кристаллических мономеров и полимерных материалов проявляется и во временной ее зависимости. Дело в том, что практически все материалы обладают ползучестью: под действием постоянной нагрузки происходит их деформация. В полимерах распрямление молекул при нагрузке материала и скольжение макромолекул происходят более длительно, чем, например, ползучесть в металлах. В какой-то мере при ползучести процессы, происходящие в полимере, соответствуют течению вязкой жидкости. Сочетание вязкого течения и высокой эластичности позволяет называть деформацию, характерную для полимеров, вязкоупругой.
Упругие и вязкие свойства тел удобно моделировать. Это дает возможность нагляднее представить механические свойства биологических объектов.
Моделирование механических свойств тел широко используется в реологии. Основная задача реологии — это выяснение зависимости напряжения от относительной деформации.
Дата добавления: 2015-08-14; просмотров: 624;