Образование отложений примесей в пароводяном тракте прямоточного котла.
Наибольшие сложности в работе котла вызывают отложения, образовавшиеся в зоне высоких тепловых потоков (топочная камера, область горелок) из-за значительного увеличения термического сопротивления теплопередачи и повышения температуры металла.
Характер распределения отложений по длине труб парового котла зависит от типа котла (барабанный или прямоточный), давления (ДКД или СКД), водно-химического режима и других факторов.
Особенности отложения примесей в прямоточных котлах СКД связаны с изменением характеристик массопереноса в зоне большой теплоемкости.
На (рис. 11.24) показано изменение скорости W, температуры t и концентрации примеси С по сечению трубы, а также изменения средней энтальпии потока hср, температуры ядра потока Тя и внутренней поверхности стенки Тст. В сечениях трубы Zя и Zст эти температуры равны температуре максимальной теплоемкости Тмт.
Растворимость веществ в ЗБТ уменьшается с ростом температуры. Характер изменения растворимости вещества в двух сечениях трубы (Cотл0, Cл0) по длине трубы показан на (рис. 11.24). Здесь же показано изменение концентрации примеси в ядре потока Ся (при Z = 0 Ся = Свх) и вблизи стенки Сст. С учетом адсорбции вещества на стенке принято Сст > Ся, где Cмин0 соответствует минимуму растворимости.
Для продуктов коррозии железа характерен второй случай, который и представлен на (рис. 11.24). В сечении Zнач, где Cстен ≥ Cстенo, на стенке трубы начинается процесс кристаллизации вещества (рис. 11.24). При увеличении концентрационного напора Cстен-Cстенo скорость роста отложении dg/dt возрастает. Здесь g - масса отложений. При приближении Тст к температуре максимальной теплоемкости Тмт (ЗБТ) скорость диффузии резко падает, и это приводит к торможению процесса кристаллизации, dg/dt снижается (рис. 11.24) сечение Zст). При этом в пристенном слое создается избыток примеси и может начаться кристаллизация в объеме слоя. Когда Тст > Тмт, кристаллизация на стенке ускоряется и dg/dt растет. Кристаллы из объема пристенного слоя частично осаждаются на эпитактическом слое отложений. Максимальная скорость отложений достигается в зоне сечения Zмакс, последующее снижение dg/dt вызвано достижением ЗБТ ядра потока (Тя →Tмт), когда массообменные процессы в ядре потока замедляются (скорость диффузии падает) и уменьшается доставка примеси из ядра в пристенный слой. Второй минимум dg/dt находится в области сечения Zя (Тя ≈ Тмт). При дальнейшем прогреве ядра потока массообменные процессы улучшаются, dg/dt снова растет, достигает третьего максимума. Последующее снижение скорости роста отложений связано с уменьшением концентрации в ядре потока Ся, на стенке Сст и концентрационного напора (Сст-Сстo).
Таким образом, при СКД зону отложения примесей в пароводяном тракте котла можно разделить на три участка: z < Zст (Тст < Тмт ); Zст<z < Zя(Тя < Тмт < Тст); Zя < z(Тя > Тмт)- в пределах каждого из участков скорость роста отложений достигает максимального значения (dg/dt)макс. Зависимость (dg/dt)макс от q, ρw и других параметров на разных участках различается.
Первый участок зоны отложений соответствует экономайзеру и началу нижней радиационной части топочной камеры, где тепловые потоки относительно невелики. Второй участок с максимальными отложениями расположен в середине и конце НРЧ, что соответствует зоне максимальных тепловых потоков. Такое неблагоприятное сочетание (максимум отложений - максимум тепловых потоков) может привести к большой скорости роста температуры металла трубы. Третий участок характеризуется снижением скорости роста отложений и расположен в зоне СРЧ, ВРЧ.
Особенностью отложения примеси в прямоточном котле докритического давления является упаривание воды в испарительных поверхностях нагрева и, соответственно, повышение концентрации примесей в жидкой фазе.
Запишем баланс примесей в пароводяной смеси
(11.32) |
где Сп, Сж - концентрация примесей в жидкой и паровой фазах;
х - массовое паросодержание. Преобразуем формулу (11.32)
(11.33) |
где Кp - коэффициент распределения примесей,
Из (11.33) определим относительное изменение концентрации примесей γж в жидкой фазе
(11.34) |
Для паровой фазы
(11.35) |
Для сильных электролитов Кp ≈ 0, тогда
(11.36) |
В этом случае при х → 1 концентрация Сж бесконечно растет (рис. 11.25).
Для слабых электролитов Kp составляет сотые и десятые доли, что существенно снижает концентрацию примесей в жидкой фазе и увеличивает в паровой (рис. 11.25).При Kp=1 gж = gп = 1, все примеси из воды, в принципе, могут перейти в пар. Это условие отвечает критическому давлению.
Из (рис. 11.25) видно, что при Кp = 0,2 концентрация примесей в жидкой фазе при х = 1 в 5 раз больше концентрации в питательной воде.
Растворимость примесей в пароводяной смеси уменьшается от растворимости в воде на линии насыщения Cжo до растворимости в паре Cжп :
(11.37) |
На (рис. 11.26) показано изменение растворимости по длине обогреваемой трубы при концентрации примесей в питательной воде Сп.в, меньше, чем минимальная растворимость в паре (Cпп)мин. По мере испарения воды Сж увеличивается и в каком-то сечении Cж ≥ Cпвo , и начинается отложение примесей на стенке трубы. Отложение примесей будет происходить до сечения, где достигается Сж = Спво.
На (рис. 11.26) показаны две кривые для Сж. Для кривой 1 диапазон энтальпии рабочей среды, где происходит отложение примесей, узок (рис. 11.26). Для кривой 2 зона отложений шире, но максимальное их количество на единицу длины трубы меньше.
При малых тепловых нагрузках (паровые котлы малой мощности на низкое давление), когда кризис кипения происходит при больших значениях х, характер отложений аналогичен кривым 1 на (рис. 11.26). В этом случае имеет смысл зону интенсивных отложений (x > 0,75…0,8) вынести из топки в конвективную шахту, где тепловой поток ниже в несколько раз. Такую поверхность нагрева называют переходной зоной. В переходной зоне происходит доиспарение воды и частичный (на 20…30°С) перегрев пара.
В переходной зоне на единицу поверхности можно допустить отложений больше во столько раз, во сколько раз в ней меньше тепловой поток по сравнению с топочными экранами, при одинаковых марках стали и температуре металла труб.
При высоких тепловых потоках и высоком давлении среды диапазон отложений сильно расширяется и организовать переходную зону практически не удается.
На (рис. 11.27) показана зависимость скорости роста отложений продуктов коррозии dg/dt от массового паросодержания х для разных значений массовой скорости ρw. При ρw = 2960 кг/(м2∙с) отложение примесей начинается при х = 0,10…0,15. Отложения примесей в первую очередь зависят от упаривания и срыва микропленки на поверхности трубы, где происходит концентрирование примеси. Максимум отложений соответствует области кризиса теплообмена.
Экспериментальные данные показывают, что максимальная интенсивность отложений продуктов коррозии имеет место при массовой скорости пара (ρwx) < 500 кг/(м2 ∙с), поэтому необходимо иметь (ρwx) > 500 кг/(м2∙с).
Дата добавления: 2015-07-10; просмотров: 1922;