Основы управления процессом
Качество сырья риформинга определяется фракционным и химическим составом бензина.
Фракционный состав сырья выбирается в зависимости от целевого назначения процесса. Если процесс проводится с целью получения индивидуальных ароматических углеводородов, то для получения бензола, толуола и ксилолов используют соответственно фракции, содержащие углеводороды С6 (62-85 °С), С7 (85-105 °С) и С8 (105— 140 °С). Если риформинг проводится с целью получения высокооктанового бензина, то сырьем обычно служит фракция 85-180 °С, соответствующая углеводородам С7 –С10.
Содержание кокса на катализаторе риформинга также проходит через минимум, который соответствует фракции, выкипающей в интервале 100 - 120 °С и имеющей среднее число атомов углерода 7 при давлениях как 0,1, так и 1,0 МПа.
Важное значение в процессах риформинга имеет химический состав сырья. Как правило, с увеличением содержания суммы нафтеновых и ароматических углеводородов в сырье выход риформата и водорода возрастает.
Температурный режим процесса и распределение объема катализатора по реакторам.
Поскольку процесс риформирования сильно эндотермичен, его осуществляют в каскаде из трех-четырех реакторов с промежуточным подогревом сырья.
В первом по ходу сырья ректоре происходит в основном протекающая с набольшей скоростью сильно эндотермическая реакция дегидрирования нафтенов. В последнем реакторе протекают преимущественно эндотермические реакции дегидроциклизации и достаточно интенсивно экзотермические реакции гидрокрекинга парафинов. Поэтому в первом реакторе имеет место наибольший (30-50 °С), а в последнем наименьший перепад (градиент) температур между входом в реактор и выходом из него. Высокий температурный градиент в головных реакторах риформинга можно понизить, если ограничить глубину протекающих в них реакций ароматизации. Это может быть достигнуто при заданном температурном режиме только уменьшением времени контакта сырья с катализатором, то есть объема катализатора в них. В этой связи на промышленных установках риформинга головной реактор имеет наименьший объем катализатора, а хвостовой - наибольший. Для трехреакторного блока распределение объема катализатора по ступеням составляет от 1:2:4 до 1:3:7 (в зависимости от химического состава сырья и целевого назначения процесса).
Поскольку составляющие суммарный процесс реакции риформинга имеют неодинаковые значения энергии активации - наибольшее для реакций гидрокрекинга (117 - 220 кДж/моль) и меньшее для реакций ароматизации (92-158 кДж/моль), то при повышении температуры в большей степени ускоряются реакции гидрокрекинга, чем реакции ароматизации. Поэтому обычно поддерживают повышающийся температурный режим в каскаде реакторов, что позволяет уменьшить роль реакций гидрокрекинга в головных реакторах, тем самым повысить селективность процесса и увеличить выход риформата при заданном его качестве.
Температура на входе в реакторы риформинга устанавливается в начале реакционного цикла на уровне, обеспечивающем заданное качество риформата, октановое число или концентрацию ароматических углеводородов. Обычно начальная температура лежит в пределах 480-500°С и лишь при работе в жестких условиях составляет 510 °С. По мере закоксовывания и потери активности катализатора температуру на входе в реакторы постепенно повышают, поддерживая стабильное качество катализата, причем среднее значение скорости подъема температуры за межрегенерационный цикл составляет 0,5 - 2,0 °С в месяц. Максимальная температура нагрева сырья на входе в последний реактор со стационарным слоем катализатора достигает до 535°С, а в реакторы установок с непрерывной регенерацией - до 543 °С.
Давление - основной, наряду с температурой, регулируемый параметр, оказывающий существенное влияние на выход и качество продуктов риформинга.
При прочих идентичных параметрах с понижением парциального давления водорода возрастает как термодинамически, так и кинетически возможная глубина ароматизации сырья и, что особенно важно, повышается при этом селективность превращений парафиновых углеводородов, поскольку снижение давления благоприятствует протеканию реакций ароматизации и тормозит реакции гидрокрекинга.
Однако при снижении давления процесса увеличивается скорость дезактивации катализатора за счет его закоксовывания. скорость дезактивации катализатора приблизительно обратно пропорциональна давлению, при давлениях 3-4 МПа коксообразование подавляется в такой степени, что установки риформинга со стационарным слоем катализатора могут работать без его регенерации практически более 1 года. Применение би- и полиметаллических катализаторов позволяет проведение процесса при 1,5-2,0 МПа без регенерации катализатора в течение 1 года.
Кратность циркуляции во-дородсодержашего газа. Этот параметр определяется как отношение объема циркулирующего водородсодержащего газа (ВСГ). Учитывая, что в циркулирующем ВСГ концентрация водорода изменяется в широких пределах - от 65 до 90 % об., а молекулярная масса сырья зависит от фракционного и химического составов, предпочтительнее пользоваться мольным отношением водород - сырье.
С увеличением мольного отношения водород - сырье снижается скорость дезактивации катализаторов риформинга (рис. 10.6) и, следовательно, удлиняется межрегенерационный цикл. Однако это связано со значительными энергозатратами, ростом от гидравлического сопротивления и объема аппаратов и трубопроводов. Выбор этого параметра производится с учетом стабильности катализатора, качеств сырья и продуктов, жесткости процесса и заданной продолжительности межрегенерационного цикла.
При использовании полиметаллических катализаторов на установках со стационарным катализатором мольное отношение водород: сырье, равное 5-6, обеспечивает длительность межрегенерационного цикла до 12 месяцев. На установках с непрерывной регенерацией катализатора поддерживается на уровне 4-5 и при интенсификации блока регенерации катализатора может быть снижено до 3.
С наибольшей скоростью дезактивация катализатора происходит обычно в последнем реакторе вследствие высокого содержания в реакционной среде ароматических углеводородов и более жесткого режима риформинга. Чтобы выровнять закоксовывание катализатора по реакторам, на некоторых моделях установок риформинга (например, магнаформинге) в последний реактор подают дополнительно часть ВСГ, в результате отношение водород - сырье составляет на входе в первый реактор (3 — 5): 1, а в последний - (9-12): 1.
Объемная скорость подачи сырья оказывает влияние на процесс риформинга как параметр, обратный времени контакта сырья с катализатором. С увеличением объемной скорости (то есть уменьшением времени контакта) сырья снижается глубина реакций ароматизации и более значительно реакций гидрокрекинга парафинов. Следовательно, при этом понизится выход продуктов гидрокрекинга - легких углеводородных газов и кокса на катализаторе. Ароматические углеводороды будут образовываться преимущественно за счет реакций дегидрирования нафтенов, протекающих значительно быстрее других. В результате повышение объемной скорости подачи сырья приводит к:
- увеличению выхода риформата, но с пониженным октановым
числом и меньшим содержанием ароматических углеводородов;
снижению выхода ВСГ с более высокой концентрацией водорода;
повышению селективности процесса и удлинению продолжительности межрегенерационного цикла.
С другой стороны, при снижении объемной скорости сырья симбатно снижается производительность установок риформинга по сырью. Оптимальное значение объемной скорости устанавливают с учетом качеств сырья и риформинга, жесткости процесса и стабильности катализатора. Обычно объемная скорость 1,5-2,0 ч-1
Дата добавления: 2015-08-11; просмотров: 1027;