Закон сохранения импульса
О законах сохранения.
Любое тело (или совокупность тел) представляет собой, по существу, систему материальных точек, или частиц. Если система с течением времени изменяется, то говорят, что изменяется ее состояние. Состояние системы характеризуется одновременным заданием положений (координат) и скоростей всех ее частиц.
Зная законы действующих на частицы системы сил и состояние системы в некоторый начальный момент времени, можно, как показывает опыт, с помощью уравнений движения предсказать ее дальнейшее поведение, т.е. найти состояние системы в любой момент времени.
Однако детальное рассмотрение поведения системы с помощью уравнений движения часто бывает настолько затруднительно (например, из-за сложности самой системы), что довести решение до конца представляется практически невозможным. А в тех случаях, когда законы действующих сил вообще неизвестны, такой подход оказывается в принципе неосуществимым. Кроме того, существует ряд задач, в которых детальное рассмотрение движения отдельных частиц не имеет смысла (например, описание движения отдельных молекул газа).
При таком положении естественно возникает вопрос: нет ли каких-либо общих принципов, являющихся следствием законов Ньютона, которые позволили бы иначе подойти к решению задачи, и помогли бы в какой-то степени обойти подобные трудности?
Оказывается, такие принципы есть. Это законы сохранения. Как уже было сказано, при движении системы ее состояние изменяется со временем. Существуют, однако, такие величины, которые обладают весьма важным и замечательным свойством сохраняться во времени. Среди этих сохраняющихся величин наиболее важную роль играют энергия, импульс и момент импульса. Эти три величины имеют важное общее свойство аддитивности: их значение для системы, состоящей из частей, взаимодействие которых пренебрежимо мало, равно сумме значений для каждой из частей в отдельности (впрочем, для импульса и момента импульса свойство аддитивности выполняется и при наличии взаимодействия). Именно свойство аддитивности и придает этим трем величинам особую роль.
Законы сохранения энергии, импульса и момента импульса имеют, как выяснилось впоследствии, весьма глубокое происхождение, связанное с фундаментальными свойствами времени и пространства — однородностью и изотропностью. А именно: закон сохранения энергии связан с однородностью времени, а законы сохранения импульса и момента импульса — соответственно с однородностью и изотропностью пространства. Сказанное следует понимать в том смысле, что перечисленные законы сохранения можно получить из второго закона Ньютона, если к нему присоединить соответствующие свойства симметрии времени и пространства.
Законы сохранения энергии, импульса и момента импульса относятся к числу тех фундаментальных принципов физики, значение которых трудно переоценить. Роль этих законов особенно возросла после того, как выяснилось, что они далеко выходят за рамки механики и представляют собой универсальные законы природы. Во всяком случае, до сих пор не обнаружено ни одного явления, где бы эти законы нарушались. Они безошибочно «действуют» и в области элементарных частиц, и в области космических объектов, в физике атома и физике твердого тела и являются одними из тех немногих наиболее общих законов, которые лежат в основе современной физики.
Законы сохранения являются весьма мощным и эффективным инструментом исследования, которым повседневно пользуются физики. Эта важнейшая роль законов сохранения как инструмента исследования обусловлена рядом причин:
1. Законы сохранения не зависят ни от траекторий частиц, ни от характера действующих сил. Поэтому они позволяют получить ряд общих и существенных заключений о свойствах различных механических процессов, не вникая в их детальное рассмотрение с помощью уравнений движения. Если, например, выясняется, что такой-то процесс противоречит законам сохранения, то сразу можно утверждать: этот процесс невозможен, и бессмысленно пытаться его осуществить.
2. Тот факт, что законы сохранения не зависят от характера действующих сил, позволяет использовать их даже тогда, когда силы вообще неизвестны. В этих случаях законы сохранения являются единственным и незаменимым инструментом исследования. Так, например, обстоит дело в физике элементарных частиц.
3. Даже в тех случаях, когда силы в точности известны, законы сохранения могут оказать существенную помощь при решении многих задач о движении частиц. Хотя все эти задачи могут быть решены с помощью уравнений движения (в этом отношении из законов сохранения мы не получим никакой дополнительной информации), привлечение законов сохранения очень часто позволяет получить решение наиболее простым и изящным путем, избавляя нас от громоздких и утомительных расчетов. Поэтому при решении новых задач обычно принято придерживаться следующего порядка: прежде всего один за другим применяют соответствующие законы сохранения и, только убедившись, что этого недостаточно, переходят затем к решению с помощью уравнений движения.
Изучение законов сохранения начнем с закона сохранения импульса.
Дата добавления: 2015-08-08; просмотров: 1137;