Ультразвук
УЛЬТРАЗВУК -упругие волны с частотами прибл. от (1,5-2)·104 Гц (15-20 кГц) до 109 Гц (1 ГГц); область частот упругих волн от 10 до 1012-1013 Гц принято называть гиперзвуком .По частоте У. удобно подразделять на 3 диапазона: У. низких частот (1,5·104-105 Гц), У. средних частот (105-107 Гц), область высоких частот ультразвук (107 - 109 Гц). Каждый из этих диапазонов характеризуется своими специфическими особенностями генерации, приёма, распространения и применения.
Свойства ультразвука и особенности ею распространения. По физ. природе ультразвук представляет собой упругие волны, и в этом он не отличается от звука, поэтому частотная граница между звуковыми и УЗ-волнами условна. Однако благодаря более высоким частотам и, следовательно, малым длинам волн (так, длины волн ультразвук высоких частот в воздухе составляют 3,4·10-3-3,4·10-5см, в воде-1,5·10-2-1,5·10-4см, в стали - 5·10-2- 5·10-4см) имеет место ряд особенностей распространения У.
Малая длина УЗ-волн позволяет в ряде случаев исследовать их распространение методами геометрической акустики. Это даёт возможность рассматривать отражение, преломление, а также фокусировку с помощью лучевой картины.
Ввиду малой длины волны ультразвук характер его распространения определяется в первую очередь молекулярной структурой среды, поэтому, измеряя скорость с и коэффициент затухания а, можно судить о молекулярных свойствах вещества (см. Молекулярная акустика ). Характерная особенность распространения ультразвук в многоатомных газах и во многоатомных жидкостях- существование областей дисперсии звука, сопровождающейся сильным возрастанием его поглощения. Эти эффекты объясняются процессами релаксации (см. Релаксация акустическая). Ультразвук в газах, и в частности в воздухе, распространяется с большим затуханием (см. Поглощение звука). Жидкости и твёрдые тела (особенно монокристаллы) представляют собой, как правило, хорошие проводники ультразвук, затухание в них значительно меньше. Поэтому области использования У. средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только ультразвук низких частот.
Другая особенность ультразвука - возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, т. к. при данной амплитуде плотность потока энергии пропорционально квадрату частоты УЗ-волны большой интенсивности сопровождаются рядом нелинейных эффектов. Так, для интенсивных плоских УЗ-волн при малом поглощении среды (особенно в жидкостях, твёрдых телах) синусоидальная у излучателя волна превращается по мере её распространения в слабую периодическую ударную волну (пилообразной формы); поглощение таких волн оказывается значительно больше (т. н. нелинейное поглощение), чем волн малой амплитуды. Распространению УЗ-волн в газах и жидкостях сопутствует движение среды, т. н. а к у с т и ч е с к о е т е ч е н и е, скорость которого зависит от вязкости среды, интенсивности ультразвука и его частоты; вообще говоря, она мала и составляет долю % от скорости ультразвука. К числу важных нелинейных явлений, возникающих при распространении интенсивного ультразвука в жидкостях, относится акустической кавитация. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости и степени её чистоты, частоты звука, температуры и др. факторов; в водопроводной воде, содержащей пузырьки воздуха, на частоте 20 кГц она составляет доли Вт/см2. На частотах диапазона У. средних частот в УЗ-поле с интенсивностью начиная с нескольких Вт/см2 могут возникнуть фонтанирование жидкости и распыление её с образованием весьма мелкодисперсного тумана. Акустическая кавитация широко применяется в технологических процессах; при этом пользуются ультразвук низких частот.
Генерация ультразвука. Для излучения ультразвука служат разнообразные устройства, которые могут быть разделены на 2 группы-механические и электромеханические. Механические излучатели ультразвука (воздушные и жидкостные свистки и сирены) отличаются простотой устройства и эксплуатации, не требуют дорогостоящей электрической энергии высокой частоты. Их недостатки -широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет использовать их для контрольно-измерительных целей; они применяются главным образом в промышленности УЗ-технологии и частично как средства сигнализации.
Основными излучателями ультразвука являются электромеханические, преобразующие электрические колебания в механические. В диапазоне ультразвуковых низких частот возможно использование эл--динамич. и эл--статич. излучателей. Широкое применение в этом диапазоне частот нашли магнитострикционные преобразователи, основанные на эффекте магнитострикции. Для излучения У. средних и высоких частот служат гл. обр. пьезоэлектрический преобразователи, использующие явление пьезоэлектричества. Для увеличения амплитуды колебаний и излучаемой в среду мощности, как правило, применяются резонансные колебания магнитострикционных и пьезоэлектрич. элементов на их собств. частоте.
Предельная интенсивность излучения У. определяется прочностными и нелинейными свойствами материала излучателей, а также особенностями использования излучателей. Диапазон интенсивности при генерации У. в области ср. частот чрезвычайно широк; интенсивности от 10-14-10-15Вт/см2 до 0,1 Вт/см2 считаются малыми. Для достижения больших интенсивностей, к-рые могут быть получены с поверхности излучателя, пользуются фокусировкой У. (см. Фокусировка звука ).Так, в фокусе параболоида, внутр. стенки к-рого выполнены из мозаики кварцевых пластинок или из пьезокерамики, на частоте 0,5 МГц удаётся получать в воде интенсивности У. > 105 Вт/см2. Для увеличения амплитуды колебаний твёрдых тел в диапазоне У. низких частот часто пользуются стержневыми УЗ-концентраторами, позволяющими получать амплитуды смещения 10-4 см.
Приём и обнаружение ультразвука. Вследствие обратимости электрич. и пьезоэлектрич. эффектов эти преобразователи используются и для приёма У. Для изучения УЗ-поля можно пользоваться и оптич. методами; У., распространяясь в к--л. среде, вызывает изменение её оптич. показателя преломления, что позволяет визуализировать звуковое поле, если среда прозрачна для света. Совокупность уплотнений и разрежений, сопровождающая распространение УЗ-волны, представляет собой своеобразную решётку, дифракцию световых волн на к-рой можно наблюдать в оптически прозрачных телах. Дифракция света на ультразвуке лежит в основе смежной области акустики и оптики- акустооптики, к-рая получила развитие после возникновения газовых лазеров непрерывного действия.
Применения ультразвука. УЗ-методы используются в физике твёрдого тела, в частности в физике полупроводников, в результате чего возникла новая область акустики - аку-стоэлектроника. На основе её достижений разрабатываются приборы для обработки сигнальной информации в микрорадиоэлектронике. У. играет большую роль в изучении структуры вещества. Наряду с методами молекулярной акустики для жидкостей и газов измерение скорости с и ко-эф. поглощения a используется для определения модулей упругости и диссипативных характеристик твёрдых тел. Получила развитие квантовая акустика, изучающая взаимодействие фононов с электронами проводимости, маг-нонами и др. квазичастицами в твёрдых телах.
У. широко применяется в технике. По данным измерений с и a во многих техн. задачах осуществляется контроль за протеканием того или иного процесса (контроль концентрации смеси газов, состава разл. жидкостей и т. п.). Используя отражение У. на границе разл. сред, с помощью УЗ-приборов измеряют размеры изделий (напр., УЗ-тол-щиномеры), определяют уровни жидкостей в ёмкостях, недоступных для прямого измерения. У. сравнительно малой интенсивности (~0,1 Вт/см2) применяется в дефектоскопии для неразрушающего контроля изделий из твёрдых материалов (рельсов, крупных отливок, качественного проката и т. д.). При помощи У. осуществляется звукови-дение: преобразуя УЗ-колебания в электрические, а последние в световые, оказывается возможным при помощи У. видеть те или иные предметы в непрозрачной для света среде. Для получения увеличенных изображений предмета с помощью У. высокой частоты создан акустич. микроскоп, аналогичный обычному микроскопу, преимущества к-рого перед оптическим - высокая контрастность и возможность получать изображения оптически непрозрачных объектов. Развитие голографии привело к определ. успехам, в области УЗ-голографии (см. также Голография акустическая ).Важную роль У. играет в гидроакустике, поскольку упругие волны являются единств. видом волн, хорошо распространяющихся в морской воде. На принципе отражения УЗ-импульсов от препятствий, возникающих на пути их распространения, строится работа эхолота, гидролокатора и др.
У. большой интенсивности (гл. обр. диапазон низких частот) применяется в технике, оказывая воздействие на протекание технол. процессов посредством нелинейных эффектов- кавитации, акустич. потоков и др. Так, при помощи мощного У. ускоряется ряд процессов тепло- и массо-обмена в металлургии. Воздействие УЗ-колебаний непосредственно на расплавы позволяет получить более мелкокристаллич. и однородную структуру металла. УЗ-кавитация используется для очистки от загрязнений как мелких (часовое произ-во, приборостроение, электронная техника), так и крупных производств. деталей (трансформаторное железо, прокат и др.). С помощью У. удаётся осуществить пайку алюминиевых изделий, приварку тонких проводников к напылённым металлич. плёнкам и непосредственно к полупроводникам, сварку пластмассовых деталей, соединение полимерных плёнок и синтетич. тканей. У. позволяет обрабатывать хрупкие детали, а также детали сложной конфигурации.
У. применяется в биологии и медицине. При действии У. на биол. объекты происходит поглощение и преобразование акустич. энергии в тепловую. Локальный нагрев тканей на доли и единицы градусов, как правило, способствует жизнедеятельности биол. объектов, повышая интенсивность процессов обмена веществ. Однако более интенсивные и длит. воздействия могут привести к перегреву биол. структур и к их разрушению.
В медицине У. используется для диагностики, терапев-тич. и хирургич. лечения. Способность У. без существенного поглощения проникать в мягкие ткани организма и отражаться от акустич. неоднородностей применяется при исследовании внутр. органов. Микромассаж тканей, активация процессов обмена и локальное нагревание тканей под действием У. используются для терапевтич. целей. УЗ-хирургия подразделяется на две разновидности, одна из к-рых связана с разрушением тканей собственно звуковыми колебаниями, вторая-с наложением УЗ-колебаний на хирургич. инструмент.
Дата добавления: 2015-08-08; просмотров: 1461;