Комплексные числа. Комплексным числом z называется число вида

Комплексным числом z называется число вида

z=x+iy, (1)

где x и y — вещественные числа, i — мнимая единица (i2=—1). Число x называется вещественной частью комплексного числа z. Символически это записывается в виде x=Rez. Число у называется мнимой частью z (записывается: y=lmz). Число

z*=xiy.(2)

называется комплексно сопряженным числу x+iy. Вещественному числу x можно сопоставить точку на оси x.

Комплексному числу z можно сопоставить точку на плоскости, имеющую координаты x, y (рис.). Каждая точка плоскости определяет некоторое комплексное число z. Следовательно, комплексное число можно задать с помощью декартовых координат x и y соответствующей точки. Однако то же самое число можно задать с помощью полярных координат ρ и φ. Между обеими парами координат имеются соотношения

x = ρ∙cosφ, y = ρ∙sinφ, , φ=arctg(y/x). (3)

Расстояние от начала координат до точки, изображающей число z, называется модулем комплексного числа (обозначается |z|). Очевидно, что

z= .

Число φ называют аргументом комплексного числа z.

Приняв во внимание соотношения (3), можно представить комплексное число в тригонометрической форме:

z=ρ(cosφ+i sinφ).

Два комплексных числа z1=x1+iy1 и z2=x2+iy2 считаются равными друг другу, если в отдельности равны их вещественные и мнимые части:

z1=z2, если x1=x2 и y1=y2.

Модули двух равных между собой комплексных чисел одинаковы, а аргументы могут отличаться лишь слагаемым, кратным 2π:

ρ1 = ρ2, φ12±2kπ.

Из выражений (1) и (2) видно, что в случае, когда z*=z, мнимая часть z есть нуль, т. е. число z оказывается чисто вещественным. Таким образом, условие вещественности числа z можно записать в виде

z* =z.

В математике доказывается соотношение

eiφ = соsφ +isinφ, (4)

которое называется формулой Эйлера. Заменив в этой формуле φ на —φ и учтя, что cos (—φ)=cosφ, a sin(‑φ) = — sinφ, получим соотношение

eiφ = соsφ ‑ isinφ. (5)

Сложим выражения (4) и (5) и решим получившееся соотношение относительно cosφ. В результате имеем

соsφ = 1/2∙(eiφiφ).

Вычтя (5) из (4), получим, что sinφ = (1/2i) (eiφeiφ).

С помощью формулы (4) комплексное число можно записать в показательной форме:

z = ρeiφ.

Комплексно сопряженное число в показательной форме имеет вид

z* = ρeiφ.

При сложении комплексных чисел складываются отдельно их вещественные и мнимые части:

z1+z2=(x1+x2)+i(y1+y2).

Перемножение комплексных чисел удобно осуществлять, беря эти числа в показательной форме:

z = z1z2 = ρ1eiφ1∙ρ2eiφ2 = ρ1ρ2ei1 + φ2)

Модули комплексных чисел перемножаются, а аргументы складываются:

ρ=ρ1∙ρ2, φ=φ12.

Аналогично осуществляется деление комплексных чисел:

легко получить, что

zz* = ρ2.

(квадрат модуля комплексного числа равен произведению этого числа на его комплексно сопряженное).








Дата добавления: 2015-08-08; просмотров: 923;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.