Расчет гибких нитей
В технике встречается еще один вид растянутых элементов, при определении прочности которых важное значение имеет собственный вес. Это — так называемые гибкие нити. Таким термином обозначаются гибкие элементы в линиях электропередач, в канатных дорогах, в висячих мостах и других сооружениях.
Пусть (рис.2.60) имеется гибкая нить постоянного сечения, нагруженная собственным весом и подвешенная в двух точках, находящихся на разных уровнях. Под действием собственного веса нить провисает по некоторой кривой АОВ.
Горизонтальная проекция расстояния между опорами (точками ее закрепления), обозначаемая , носит название пролета.
Нить имеет постоянное сечение, следовательно, вес ее распределен равномерно по ее длине. Обычно провисание нити невелико по сравнению с ее пролетом, и длина кривой АОВ мало отличается (не более чем на 10%) от длины хорды АВ. В этом случае с достаточной степенью точности можно считать, что вес нити равномерно распределен не по ее длине, а по длине ее проекции на горизонтальную ось, т. е. вдоль пролета l.
Рис.2.60
Эту категорию гибких нитей мы и рассмотрим. Примем, что интенсивность нагрузки, равномерно распределенной по пролету нити, равна q. Эта нагрузка, имеющая размерность сила/длина, может быть не только собственным весом нити, приходящимся на единицу длины пролета, но и весом льда или любой другой нагрузкой, также равномерно распределенной. Сделанное допущение о законе распределения нагрузки значительно облегчает расчет, но делает его вместе с тем приближенным; если при точном решении (нагрузка распределена вдоль кривой) кривой провисания будет цепная линия, то в приближенном решении кривая провисания оказывается квадратной параболой.
Начало координат выберем в самой низшей точке провисания нити О, положение которой, нам пока неизвестное, очевидно, зависит от величины нагрузки q, от соотношения между длиной нити по кривой и длиной пролета, а также от относительного положения опорных точек. В точке О касательная к кривой провисания нити, очевидно, горизонтальна. По этой касательной направим вправо ось .
Вырежем двумя сечениями — в начале координат и на расстоянии от начала координат (сечение m — n) — часть длины нити. Так как нить предположена гибкой, т. е. способной сопротивляться лишь растяжению, то действие отброшенной части на оставшуюся возможно только в виде силы, направленной по касательной к кривой провисания нити в месте разреза; иное направление этой силы невозможно.
На рис.2.61 представлена вырезанная часть нити с действующими на нее силами. Равномерно распределенная нагрузка интенсивностью q направлена вертикально вниз. Воздействие левой отброшенной части (горизонтальная сила Н) направлено, ввиду того, что нить работает на растяжение, влево. Действие правой отброшенной части, сила Т, направлено вправо по касательной к кривой провисания нити в этой точке.
Cоставим уравнение равновесия вырезанного участка нити. Возьмем сумму моментов всех сил относительно точки приложения силы Т и приравняем ее нулю. При этом учтем, опираясь на приведенное в начале допущение, что равнодействующая распределенной нагрузки интенсивностью q будет , и что она приложена посредине отрезка . Тогда
Рис.2.61
,
откуда
(2.39)
Отсюда следует, что кривая провисания нити является параболой. Когда обе точки подвеса нити находятся на одном уровне, то . Величина в данном случае будет так называемой стрелой провисания. Ее легко определить. Так как в этом случае, ввиду симметрии, низшая точка нити находится посредине пролета, то ; подставляя в уравнение (2.39) значения и получаем:
(2.40)
Из этой формулы находим величину силы Н:
(2.41)
Величина Н называется горизонтальным натяжением нити.
Таким образом, если известны нагрузка q и натяжение H, то по формуле (2.40) найдем стрелу провисания . При заданных и натяжение Н определяется формулой (2.41). Связь этих величин с длиной нити по кривой провисания устанавливается при помощи известной из математики приближенной формулы)
Составим еще одно условие равновесия вырезанной части нити, а именно, приравняем нулю сумму проекций всех сил на ось :
Из этого уравнения найдем силу Т — натяжение в произвольной точке
Откуда следует, что сила Т увеличивается от низшей точки нити к опорам и будет наибольшей в точках подвеса — там, где касательная к кривой провисания нити составляет наибольший угол с горизонталью. При малом провисании нити этот угол не достигает больших значений, поэтому с достаточной для практики степенью точности можно считать, что усилие в нити постоянно и равно ее натяжению Н. На эту величину обычно и ведется расчет прочности нити. Если все же требуется вести расчет на наибольшую силу у точек подвеса, то для симметричной нити ее величину определим следующим путем. Вертикальные составляющие реакций опор равны между собой и равны половине суммарной нагрузки на нить, т. е. . Горизонтальные составляющие равны силе Н, определяемой по формуле (2.41). Полные реакции опор получатся как геометрические суммы этих составляющих:
Условие прочности для гибкой нити, если через F обозначена площадь сечения, имеет вид:
Заменив натяжение Н его значением по формуле (2.41), получим:
Из этой формулы при заданных , , и можно определить необходимую стрелу провисания . Решение при этом упростится, если в включен лишь собственный вес; тогда , где — вес единицы объема материала нити, и
т. е. величина F не войдет в расчет.
Если точки подвеса нити находятся на разных уровнях, то, подставляя в уравнение (2.39) значения и , находим и :
Отсюда из второго выражения определяем натяжение
а деля первое на второе, находим:
или
Имея в виду, что , получаем:
или
Подставив это значение в формулу определенного натяжения Н, окончательно определяем:
(2.42)
Два знака в знаменателе указывают на то, что могут быть две основные формы провисания нити. Первая форма при меньшем значении Н (знак плюс перед вторым корнем) дает нам вершину параболы между опорами нити. При большем натяжении Н (знак минус перед вторым корнем) вершина параболы расположится левее опоры А. Получаем вторую форму кривой. Возможна и третья (промежуточная между двумя основными) форма провисания, соответствующая условию ; тогда начало координат совмещается с точкой А. Та или иная форма будет получена в зависимости от соотношений между длиной нити по кривой провисания АОВ (рис.2.60) и длиной хорды АВ.
Если при подвеске нити на разных уровнях неизвестны стрелы провисания и , но известно натяжение Н, то легко получить значения расстояний а и b и стрел провисания и . Разность h уровней подвески равна:
Подставим в это выражение значения и , и преобразуем его, имея в виду, что :
откуда
а так как то
и
Следует иметь в виду, что при будет иметь место первая форма провисания нити, при — вторая форма провисания и при — третья форма. Подставляя значения и в выражения для стрел провисания и , получаем величины и :
Теперь выясним, что произойдет с симметричной нитью, перекрывающей пролет , если после подвешивания ее при температуре и интенсивности нагрузки температура нити повысится до а нагрузка увеличится до интенсивности (например, из-за ее обледенения). При этом предположим, что в первом состоянии задано или натяжение , или стрела провисания (Зная одну из этих двух величин, всегда можно определить другую.)
При подсчете деформации нити, являющейся по сравнению с длиной нити малой величиной, сделаем два допущения: длина нити равна ее пролету, а натяжение постоянно и равно Н. При пологих нитях эти допущения дают небольшую погрешность.
В таком случае удлинение нити, вызванное увеличением температуры, будет равно
где — коэффициент линейного температурного расширения материала нити.
При повышении температуры нить удлиняется. В связи с этим увеличится ее стрела провисания и, как следствие, уменьшится ее натяжение. С другой стороны, из-за увеличения нагрузки, как видно из формулы (2.41), натяжение увеличится. Допустим, что окончательно натяжение увеличивается. Тогда удлинение нити, вызванное увеличением натяжения, будет, согласно закону Гука, равно:
Если окажется меньше, чем то величина будет отрицательной. При понижении температуры будет отрицательной величина .
Таким образом, длина нити во втором ее состоянии будет равна длине при первом ее состоянии с добавлением тех деформаций, которые произойдут от повышения температуры и натяжения:
Изменение длины нити вызовет изменение и ее стрелы провисания. Вместо , она станет .
Теперь заменим в последнем уравнении и их известными выражениями, а деформации и — также их полученными ранее значениями. Тогда уравнение для S2 примет следующий вид:
В этом уравнении заменим и их значениями по формуле (2.40):
и
Тогда, после некоторых преобразований, уравнение для расчета натяжения может быть написано в виде:
Определив из этого уравнения натяжение , можно найти по формуле (2.40) и стрелу .
В случае, если при переходе от первого ко второму состоянию нагрузка не изменяется, а изменяется лишь температура, то в последнем уравнении интенсивность заменяется на . В случае, если при переходе от первого ко второму состоянию не изменяется температура, а изменяется лишь нагрузка, то в этом уравнении средний член в квадратной скобке равен нулю. Полученное уравнение пригодно, конечно, и при понижении температуры и уменьшении нагрузки.
В тех случаях, когда стрела провисания не является малой по сравнению с пролетом, выведенные выше формулы, строго говоря, неприменимы, так как действительная кривая провисания нити, цепная линия, будет уже значительно отличаться от параболы, полученной нами благодаря предположению о равномерном распределении нагрузки по пролету нити, а не по ее длине, как то имеет место в действительности.
Точные подсчеты показывают, что значение погрешности в величине натяжения Н, вызванной этим предположением, таково: при отношении погрешность не превосходит 0,3%, при ошибка составляет уже 1,3%, а при погрешность несколько, превосходит 5%.
Лекция 2 (продолжение). Примеры решения на осевое растяжение – сжатие и задачи для самостоятельного решения
Дата добавления: 2015-08-08; просмотров: 693;