Уравнение неразрывности в дифференциальной форме

В потоках несжимаемой жидкости, в которых нет ни оттока, ни присоединения расхода, объемный расход в любом сечении постоянный. Можно поэтому предположить, что в каждой точке внутри потока должно выполняться соотношение, гарантирующее, что в ней не происходит ни исчезновения, ни возникновения жидкости. Таким уравнением является уравнение неразрывности в дифференциальной форме. Если поток в каждой точке задан вектором скорости (x,y,z) (в проекциях , и ), то уравнение неразрывности имеет вид

+ + = 0.

Уравнение неразрывности должно выполняться в каждой точке потока жидкости.

Задача 6.3.Скорость потока задана так

Ux = a (3x – 2y - z), Uy = a (3x – 2y – 2z), Uz = a (2x – 3y – z).

Проверить, возможно ли существование такого потока. В выражениях для Ux,Uy и Uz постоянный коэффициент a служит для сохранения размерности скорости в правой части.

Решение.Подсчитаем частные производные:

= 3a; = - 2a; = - a.

Складывая их, получаем ноль, поэтому уравнение неразрывности выполняется и такой поток может существовать.








Дата добавления: 2015-08-01; просмотров: 1761;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.