Последовательность протекания анодных процессов
Во всех электрохимических процессах в первую очередь на аноде протекают процессы окисления с наименьшим окислительно-восстановительным потенциалом
8.5.5. Условие проведения электролиза
8.5.5.1. Зависимость тока от напряжения на электродах (график)
8.5.5.2. ЭДС обратного гальванического элемента
8.5.5.3. Перенапряжение
Перенапряже́ние
электрохимическое, отклонение электродного потенциала (См. Электродный потенциал) от его равновесного (по отношению к приэлектродному составу раствора) термодинамического значения при поляризации электрода внешним током. При заметном удалении от равновесия П. (η) и плотность поляризующего тока (i) обычно связаны соотношением η = а + b lg i (уравнение Тафеля), где а и b — эмпирические постоянные. П. зависит от температуры, природы электродного материала и состава раствора. П. необходимо для ускорения нужной электродной реакции. Если скорость электродной реакции в целом определяется скоростью собственно электрохимической стадии, связанной с переносом заряда, то П. усиливает электрическое поле, действующее на разряжающиеся частицы, благодаря чему снижается энергия активации разряда. Поскольку электрическое поле в значительной степени обусловлено строением двойного электрического слоя (См. Двойной электрический слой), П. оказывается зависящим от концентрации постороннего электролита и адсорбирующихся веществ, влияющих на распределение потенциала в двойном слое. На повышении П. основано действие многих ингибиторов коррозии металлов (см. Ингибиторы химические), что является одной из положительных сторон П. В то же время П. в промышленном электролизе, неизбежно связанное с дополнительным расходом энергии, приводит к увеличению себестоимости продукции.
8.5.5.4 Потенциал разложения
Потенциал разложения — это минимально необходимая разность потенциалов, при которой начинается электролиз данного соединения. Потенциал разложения также связан с термодинамическими функциями, так как разложить вещество можно, только затратив такое же количество энергии, которое выделилось при его образовании. Поэтому при помощи электролиза из совместного раствора можно выделять какой-либо один ион, обладающий в данных условиях наименьшим потенциалом разложения.
Ер = ∆E + η
8.5.6. Применение электролиза
8.5.6.1. Гальванопластика
Гальванопластика — получение сравнительно толстого слоя металлических осадков на поверхности какого-либо предмета.
Целью гальванопластики является получение точной металлической копии предмета. При гальванопластике осадки получаются массивными, прочными, легко отделяющимися от покрываемой поверхности. Основное применение в гальванопластике имеет медь; более ограниченное использование железа, никеля, серебра, золота, а также олово, хром и другие металлы и их сочетания. Копируемое изделие, если оно само изготовлено не из электропроводящего материала, покрывают тонким слоем электропроводящего материала, и затем наносят гальваническое покрытие. Этот слой обычно делают легко отделяющимся от поверхности изделия, например, напудривают порошок графита. В гальванопластическом производстве труб и других полых предметов электролитическое осаждение в ряде случаев ведётся на сердечники из легкоплавких сплавов, которые потом удаляются путём нагрева выше температуры их плавления
8.5.6.2. Гальваностегия
Гальваностегия — электролитическое осаждение тонкого слоя металла на поверхности какого-либо металлического предмета для защиты его от коррозии, повышения износоустойчивости, предохранения от цементации, в декоративных целях и т. д.
Получаемые покрытия — осадки — должны быть плотными, а по структуре — мелкозернистыми. Чтобы достигнуть мелкозернистого строения осадков, необходимо выбрать соответствующие состав электролита, температурный режим и плотность тока. Выбор способа покрытия зависит от назначения и условий работы изделия.
8.5.6.3. Получение и очистка металлов
Существуют несколько основных способов получения —металлов.
Восстановление:
— из их оксидов углем или оксидом углерода (II)
ZnО + С = Zn + СО
Fе2О3 + ЗСО = 2Fе + ЗСО2
— водородом
WO3 + 3H2 =W + 3H2O
СоО + Н2 = Со + Н2О
— алюминотермия
4Аl + ЗМnО2 = 2А12О3 + ЗМn
Обжигом сульфидов металлов и последующим восстановлением образовавшихся оксидов (например, углем)
2ZnS + ЗО2 = 2ZnО + 2SО2
ZnО + С = СО + Zn
Электролизом расплавов солей
СuСl2, — Сu2+ 2Сl
Катод (восстановление): Анод (окисление):
Сu2+ 2е- = Сu0 2Cl - 2е- = Сl°2
Дата добавления: 2015-07-30; просмотров: 1250;