В) в просторі

 

Для розв’язування головних геодезичних задач в просторі використовують системи просторових декартових (X, Y, Z), геодезичних (B, L, H) та топоцентричних горизонтальних - декартових (x’, y’,z’) та полярних (A, z,D) координат і зв’язки між ними (див. розділи 1 і 2).

Пряма геодезична задача формулюється наступним чином. Задані геодезичні координати B1,L1,H1 початкової точки Q1 і топоцентричні полярні координати z12, A12, D точки Q2 відносно початкової точки Q1. Необхідно визначити геодезичні координати B2,L2,H2 точки Q2.

Поставлену задачу розв’язують в такій послідовності:

а) за формулами зв’язку (2.32) обчислюють просторові декартові координати X1,Y1,Z1 точки Q1;

б) обчислюють елементи матриці перетворення координат A1 за формулою (2.37).

в) використовуючи формули (2.34), обчислюють топоцентричні декартові координати x2’,y2’,z2’;

г) за формулою (2.36) обчислюють декартові координати X2,Y2,Z2 точки Q2;

д) для переходу до геодезичних координат B2,L2,H2 точки Q2 використовують формули зв’язку (2.33).

Обернена геодезична задача . Задані геодезичні координати B,L,H двох точок Q1 та Q2. Необхідно знайти топоцентричні полярні координати z12, A12, D точки Q2 відносно початкової точки Q1.

Для розв’язування поставленої задачі можна застосувати таку схему:

а) від геодезичних координат B,L,H точок Q1 та Q2 за формулами (2.32) переходять до декартових Xi,Yi,Zi (де і=1,2);

б) обчислюють елементи транспонованої матриці перетворення координат за формулою

 

 

в) за формулою (2.38) обчислюють топоцентричні декартові координати xi’,yi’,zi(і=1,2) точки Q1 відносно точки Q2 і навпаки.

г) топоцентричні полярні координати z12, A12, D точки Q2 відносно початкової точки Q1 і z21, A21, D точки Q1 відносно точки Q2 обчислюють за формулами (2.35).

Приведені вище схеми можна використовувати також і для розв’язування головної геодезичної задачі між точками на поверхні еліпсоїда. Для цього в цих формулах достатньо прийняти H1=H2=0. Розв’язком при цьому, наприклад, в оберненій геодезичній задачі будуть азимути прямого і оберненого нормальних перерізів та довжина хорди цих перерізів.








Дата добавления: 2015-07-24; просмотров: 859;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.