ТЕМА 2.I МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

 

Методы решения систем линейных алгебраических уравнений разделяются на точные и итерационные. Точные методы представляют собой конечные алгоритмы для вычисления корней системы. Это - метод обратной матрицы, метод Крамера, метод Гаусса, метод Жордана-Гаусса, метод главных элементов, метод квадратных корней и др. Несмотря на то, что методы называются точными, результаты вычислений имеют погрешности вследствие неизбежных округлений при выполнении действий.

Итерационные методы позволяют получать корни системы с заданной точностью путем сходящихся бесконечных процессов. К их числу относятся: метод простой итерации, метод Зейделя, метод релаксации и др. Эффективность применения итерационных методов существенно зависят от удачного выбора начального приближения и быстроты сходимости процесса.

Все вышеперечисленные методы (точные и приближенные) имеют свои преимущества и недостатки и поэтому для выбора оптимального (лучшего) метода для решения конкретной системы линейных уравнений требуются знания пользователя.

А. Пусть дана система n линейных уравнений с n неизвестными

Запишем эту систему в матричном виде

х =

или в общем матричном виде

А∙Х=В,

где: А - матрица коэффициентов;

Х – вектор искомых параметров;

В – вектор свободных членов.

Рассмотрим решение линейной системы уравнений различными методами.








Дата добавления: 2015-07-06; просмотров: 679;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.