Вопрос 5. Пищеварение, обмен веществ и энергии
Для нормальной жизнедеятельности организму необходим пластический и энергетический материал. Эти вещества поступают в организм с пищей. Но только минеральные соли, вода и витамины усваиваются человеком в том виде, в котором они находятся в пище. Белки, жиры и углеводы попадают в организм в виде сложных комплексов, и для того чтобы всосаться и подвергнуться усвоению, требуется сложная физическая и химическая переработка пищи. При этом компоненты пищи должны утратить свою видовую специфичность, иначе они будут приняты системой иммунитета как чужеродные вещества. Для этих целей и служит система пищеварения.
Пищеварение— совокупность физических, химических и физиологических процессов, обеспечивающих обработку и превращение пищевых продуктов в простые химические соединения, способные усваиваться клетками организма. Эти процессы идут в определенной последовательности во всех отделах пищеварительного тракта (полости рта, глотке, пищеводе, желудке, тонкой и толстой кишке с участием печени и желчного пузыря, поджелудочной железы), что обеспечивается регуляторными механизмами различного уровня. Последовательная цепь процессов, приводящая к расщеплению пищевых веществ до мономеров, способных всасываться, носит название пищеварительного конвейера.
В зависимости от происхождения гидролитических ферментов пищеварение делят на 3 типа: собственное, симбионтное и аутентическое.
Собственное пищеварение осуществляется ферментами, синтезированными железами человека или животного.
Симбионтное пищеварение происходит под влиянием ферментов, синтезированных симбионтами макроорганизма (микроорганизмами) пищеварительного тракта. Так происходит переваривание клетчатки пищи в толстой кишке.
Аутолитическое пищеварение осуществляется под влиянием ферментов, содержащихся в составе принимаемой пищи. Материнское молоко содержит ферменты, необходимые для его створаживания.
Физиологические основы голода и насыщения. Потребность в питательных веществах выражается в со
стоянии голода и создает мотивацию поиска и поедания пищи. Совокупность нейронов различных отделов центральной нервной системы, которые определяют пищевое поведение и регулируют пищеварительные функции человека и животного, составляют пищевой центр. Эти нейроны находятся в коре больших полушарий, где локализуется центр голода. При возбуждении этих ядер развивается гиперфагия — усиленное потребление пищи. Разрушение этих ядер приводит к отказу от пищи — афагии. В вентромедиальных ядрах гипоталамуса находится центр насыщения. При стимуляции этих нейронов возникает афагия, при их разрушении — гиперфагия. Между центром голода и центром насыщения существуют реципрокные отношения, т.е. если один центр возбужден, то другой заторможен. Возбуждение или торможение этих ядер происходит в зависимости от содержания питательных веществ в крови, а также сигналов, поступающих от различных рецепторов. Существует несколько теорий, объясняющих возникновение чувства голода.
Глюкостатическая теория — ощущение голода связано со снижением уровня глюкозы в крови.
Аминоацидостатическая — чувство голода создается понижением содержания в крови аминокислот.
Липостатическая — нейроны пищевого центра возбуждаются недостатком жирных кислот и триглицеридов в крови.
Метаболическая — раздражителем нейронов пищевого центра являются продукты метаболизма.
Термостатическая — снижение температуры крови вызывает чувство голода.
Локальная теория — чувство голода возникает в результате импульсации от механорецепторов желудка при его «голодных» сокращениях.
Насыщение возникает в результате возбуждения нейронов центра насыщения. Выделяют первичное, или сенсорное, насыщение и вторичное, или обменное. Вторичное, обменное, или истинное, насыщение наступает через 1,5 — 2 часа с момента приема пищи, когда в кровь поступают продукты гидролиза питательных веществ. Гормоны желудочно-кишечного тракта также играют важную роль в возникновении чувства голода и насыщения.
Фармакологическая коррекция нарушений пищеварительной системы. С помощью различных фармакологических средств можно воздействовать на секреторную и моторную функции желудочно-кишечного тракта.
Широкое применение в клинике нашли лекарственные средства, тормозящие кислотно-пепсиновую секрецию желудочных желез. Эти препараты используются при язвенных поражениях желудка и двенадцатиперстной кишки. Для нейтрализации соляной кислоты при гиперацидных гастритах применяют антацидные вещества, повышающие рН. В качестве антацидов используют различные сочетания гидроокиси алюминия и магния, например, в составе препарата альмагеля. Эти вещества обладают также адсорбирующими и обволакивающими свойствами.
При различных нарушениях процессов пищеварения, связанных с недостаточной секреторной способностью желудка, кишечника, поджелудочной железы, расстройствах пищеварения вследствие нарушения диеты, применяют ферментные препараты. Эти лекарственные средства, как правило, являются комплексными препаратами, содержащими определенный набор различных ферментов. При недостаточной функции желудочных желез используют натуральный желудочный сок, получаемый от здоровых собак через фистулу желудка при мнимом кормлении, или препараты, содержащие протеолитические ферменты. Так, из слизистой оболочки желудка свиней получают основной протеолитический фермент пепсин. Например, ферментный препарат из поджелудочных желез убойного скота панкреатин содержит трипсин и амилазу. Комплексный препарат фестал содержит основные компоненты поджелудочной железы (амилазу, липазу, протеазу) и желчи.
При заболеваниях желудочно-кишечного тракта, сопровождающихся спазмом гладких мышц (спастические колиты, пилороспазм, холециститы), применяются лекарственные вещества, напротив, понижающие тонус гладких мышц. Таким действием обладают спазмолитические средства (но-шпа) и холинолитические препараты (атропин, метацин).
Всасывание — это процесс транспорта переваренных пищевых веществ из полости желудочно-кишечного тракта в кровь, лимфу и межклеточное пространство.
Оно осуществляется на протяжении всего пищеварительного тракта, но в каждом отделе имеются свои особенности.
В полости рта всасывание незначительное, так как пища там не задерживается, но некоторые вещества, например, цианистый калий, а также лекарственные препараты (эфирные масла, валидол, нитроглицерин и др.) всасываются в ротовой полости и очень быстро попадают в кровеносную систему, минуя кишечник и печень. Это находит применение как способ введения лекарственных веществ.
В желудке всасываются некоторые аминокислоты, немного глюкозы, воды с растворенными в ней минеральными солями и довольно существенно всасывание алкоголя.
Основное всасывание продуктов гидролиза белков, жиров и углеводов происходит в тонком кишечнике. Белки всасываются в виде аминокислот, углеводы — в виде моносахаридов, жиры — в виде глицерина и жирных
кислот. Всасыванию нерастворимых в воде жирных кислот помогают водорастворимые соли желчных кислот.
Всасывание питательных веществ в толстой кишке незначительно, там всасывается много воды, что необходимо для формирования кала, в небольшом количестве глюкоза, аминокислоты, хлориды, минеральные соли, жирные кислоты и жирорастворимые витамины A, D, Е, К. Вещества из прямой кишки всасываются так же, как и из ротовой полости, т.е. непосредственно в кровь, минуя портальную кровеносную систему. На этом основано действие так называемых питательных клизм.
Что касается других отделов желудочно-кишечного тракта (желудка, тонкого и толстого кишечника), то всосавшиеся в них вещества вначале поступают по портальным венам в печень, а затем в общий кровоток. Лимфоотток от кишечника осуществляется по кишечным лимфатическим сосудам в млечную цистерну. Наличие клапанов в лимфатических сосудах препятствует возврату лимфы в сосуды, которая по грудному протоку поступает в верхнюю полую вену.
Всасывание зависит от величины всасывательной поверхности. Особенно она велика в тонкой кишке и создается за счет складок, ворсинок и микроворсинок. Так, на 1 мм2 слизистой оболочки кишки приходится 30 — 40 ворсинок, а на каждый энтероцит — 1700 — 4000 микроворсинок. Каждая ворсинка — это микроорган, содержащий мышечные сократительные элементы, кровеносный и лимфатический микрососуды и нервное окончание. Это молекулярное сито или сеть, которая благодаря отрицательному заряду и гидрофильности пропускает к мембране микроворсинок низкомолекулярные вещества и препятствует переходу через нее высокомолекулярных веществ.
Количество пищи, ее состав, интервал времени между едой и приемом лекарств влияют на всасыванию лекарств. Так, всасывание тетрациклинов, ампицилина нарушается под действием молока, солей железа, при высоком содержании углеводов, белков и жира в пище.
Объем жидкости, принимаемой вместе с лекарствами, может вызвать или замедление, или ускорение всасывания.
Печень — депо крови. Печень участвует в перераспределительных реакциях кровеносной системы. Алкогольная интоксикация, отравление токсическими веществами вызывают цирроз печени — разрастание вокруг сосудов фиброзной ткани. Кроме того, застой крови в правом сердце, увеличение давления в системе воротной вены и полой вены вызывает переполнение кровью сосудов печени, в результате плазма выходит непосредственно через капсулу печени в брюшную полость. Это явление называется асцитом.
Дезинтоксикационная функция печени. Эта функция состоит в инактивации и выведении лекарственных препаратов (например, сульфаниламидов, антибиотиков и др.), гормонов, вредных веществ: аммиака, индола, скатола, фенола, алкоголя, который метаболизируется в основном в печени, а затем выводится с мочой и калом.
Биотрансформация лекарственных препаратов в печени. Пройдя через стенку желудка и кишечника, лекарственные препараты, прежде чем попасть в системное кровообращение, через портальную кровеносную систему проникают в печень, где они подвергаются метаболическим превращениям под действием ферментативных систем печени («эффект первичного превращения»). Поэтому дозы некоторых препаратов при их приеме через желудочно-кишечный тракт должны быть больше, чем при внутривенном введении для достижения необходимого эффекта.
Гепатотропные средства. Лекарственные препараты, применяемые для лечения заболеваний печени и желчевыводящих путей, в настоящее время делят на три группы: 1) желчегонные; 2) гепатопротекторные; 3) холелитолитические средства.
В свою очередь, в группу желчегонных входят препараты, усиливающие образование желчи и желчных кислот, и препараты, способствующие выделению желчи из желчного пузыря в 12-перстную кишку.
К гепатопротекторам относятся препараты (лив-52, эссенциале и др.), повышающие устойчивость печени к патологическим воздействиям, способствующие восстановлению активности ее ферментативных систем, ингибирующие перекисное окисление липидов, — это витамины группы Р (рутин, кварцетин).
Холелитолитические средства — это производные дезоксихолевой кислоты, снижающие содержание холестерина в желчи и растворяющие холестериновые камни в желчном пузыре (хенодиол, хенофалк).
Обмен вещества и энергии.В живых организмах любой процесс сопровождается передачей энергии. Энергию определяют как способность совершать работу. Специальный раздел физики, который изучает свойства и превращения энергии в различных системах, называется термодинамикой. Под термодинамической системой понимают совокупность объектов, условно выделенных из окружающего пространства. Термодинамические системы разделяют на изолированные, закрытые и открытые. Изолированными называют системы, энергия и масса которых не изменяется, т.е. они не обмениваются с окружающей средой ни веществом, ни энергией. Закрытые системы обмениваются с окружающей средой энергией, но не веществом, поэтому их масса остается постоянной. Открытыми системами называют системы, обменивающиеся с окружающей средой веществом и энергией. С точки зрения
термодинамики живые организмы относятся к открытым системам, так как главное условие их существования — непрерывный обмен веществ и энергии. В основе процессов жизнедеятельности лежат реакции атомов и молекул, протекающие в соответствии с теми же фундаментальными законами, которые управляют такими же реакциями вне организма.
Согласно первому закону термодинамики энергия не исчезает и не возникает вновь, а лишь переходит из одной формы в другую. Второй закон термодинамики утверждает, что вся энергия в конце концов переходит в тепловую энергию, и организация материи становится полностью неупорядоченной. В более строгой форме этот закон формулируется так: энтропия замкнутой системы может только возрастать, а количество полезной энергии (т.е. той, с помощью которой может быть совершена работа) внутри системы может лишь убывать. Под энтропией понимают степень неупорядоченности системы.
Неизбежная тенденция к возрастанию энтропии, сопровождаемая столь же неизбежным превращением полезной химической энергии в бесполезную тепловую, заставляет живые системы захватывать все новые порции энергии (пищи), чтобы поддерживать свое структурное и функциональное состояние. Фактически способность извлекать полезную энергию из окружающей среды является одним из основных свойств, которые отличают живые системы от неживых, т.е. непрерывно идущий обмен веществ и энергии является одним из основных признаков живых существ. Чтобы противостоять увеличению энтропии, поддерживать свою структуру и функции, живые существа должны получать энергию в доступной для них форме из окружающей среды и возвращать в среду эквивалентное количество энергии в форме, менее пригодной для дальнейшего использования.
Обмен веществ и энергии — это совокупность физических, химических и физиологических процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и окружающей средой. Обмен веществ у живых организмов заключается в поступлении из внешней среды различных веществ, в превращении и использовании их в процессах жизнедеятельности и в выделении образующихся продуктов распада в окружающую среду.
Все происходящие в организме преобразования вещества и энергии объединены общим названием — метаболизм (обмен веществ). На клеточном уровне эти преобразования осуществляются через сложные последовательности реакций, называемые путями метаболизма, и могут включать тысячи разнообразных реакций. Эти реакции протекают не хаотически, а в строго определенной последовательности и регулируются множеством генетических и химических механизмов. Метаболизм можно разделить на два взаимосвязанных, но разнонаправленных процесса: анаболизм (ассимиляция) и катаболизм (диссимиляция).
Анаболизм — это совокупность процессов биосинтеза органических веществ (компонентов клетки и других структур органов и тканей). Он обеспечивает рост, развитие, обновление биологических структур, а также накопление энергии. Анаболизм заключается в химической модификации и перестройке поступающих с пищей молекул в другие более сложные биологические молекулы. Например, включение аминокислот в синтезируемые клеткой белки в соответствии с инструкцией, содержащейся в генетическом материале данной клетки.
Катаболизм — это совокупность процессов расщепления сложных молекул до более простых веществ с использованием части из них в качестве субстратов для биосинтеза и расщеплением другой части до конечных продуктов метаболизма с образованием энергии. К конечным продуктам метаболизма относятся вода (у человека примерно 350 мл в день), двуокись углерода (около 230 мл/мин), окись углерода (0,007 мл/мин), мочевина (около 30 г/день), а также другие вещества, содержащие азот (примерно 6 г/день). Катаболизм обеспечивает извлечение химической энергии из содержащихся в пище молекул и использование этой энергии на обеспечение необходимых функций. Например, образование свободных аминокислот в результате расщепления поступающих с пищей белков и последующее окисление этих аминокислот в клетке с образованием С02 и Н20, что сопровождается высвобождением энергии.
Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а преобладание катаболических процессов ведет к частичному разрушению тканевых структур. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста (в детском возрасте преобладает анаболизм, у взрослых обычно наблюдается равновесие, в старческом возрасте преобладает катаболизм), состояния здоровья, выполняемой организмом физической или психоэмоциональной нагрузки.
Превращение и использование энергии. В процессе обмена веществ постоянно происходит превращение энергии: энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Человек и животные получают энергию из окружающей среды в виде потенциальной энергии, заключенной в химических связях молекул жиров, белков и углеводов. Все процессы жизнедеятельности обеспечиваются энергией за счет анаэробного и аэробного метаболизма. Получение энергии без участия кис
лорода, например, гликолиз, (расщепление глюкозы до.молочной кислоты) называется анаэробным обменом. В ходе анаэробного расщепления глюкозы (гликолиза) или ее резервного субстрата гликогена (гликогенолиза) превращение 1 моля глюкозы в 2 моля лактата приводит к образованию 2 молей АТФ. Энергии, образующейся в ходе анаэробных процессов, недостаточно для осуществления активной жизни, реакции, происходящие с участием кислорода, энергетически более эффективны. Все процессы, генерирующие энергию с участием кислорода, называются аэробным обменом.
Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма.
Единица измерения энергии, обычно применяемая в биологии и медицине, — калория (кал). Она определяется как количество энергии, необходимое для повышения температуры 1 г воды на ГС. В Международной системе единиц (СИ) при измерении энергетических величин используется джоуль (1 ккал=4,19 кДж).
Энергетический эквивалент пищи. Количество энергии, выделяемой при окислении какого-либо соединения, не зависит от числа промежуточных этапов его распада, т.е. от того, сгорело ли оно или окислилось в ходе катаболических процессов. Запас энергии в пище определяется в калориметрической бомбе — замкнутой камере, погруженной в водяную баню. Точно взвешенную пробу помещают в эту камеру, наполненную чистым 02, и поджигают. Количество выделившейся энергии определяется по изменению температуры воды, окружающей камеру.
При окислении углеводов выделяется 17,17 кДж/г (4,1 ккал/г), окисление 1 г жира дает 38,96 кДж (9,3 ккал). Запасание энергии в форме жира является наиболее экономичным способом длительного хранения энергии в организме. Белки окисляются в организме не полностью. Аминогруппы отщепляются от молекулы белка и выводятся с мочой в форме мочевины. Поэтому при сжигании белка в калориметрической бомбе выделяется больше энергии, чем при его окислении в организме: при сжигании белка в калориметрической бомбе выделяется 22,61 кДж/г (5,4 ккал/г), а при окислении в организме — 17,17 кДж/г (4,1 ккал/г). Разница приходится на ту энергию, которая выделяется при сжигании мочевины.
Определение уровня метаболизма. Почти половина всей энергии, получаемой в результате катаболизма, теряется в виде тепла в процессе образования молекул АТФ. Мышечное сокращение — процесс еще менее эффективный. Около 80% энергии, используемой при мышечном сокращении, теряется в виде тепла и только 20% превращается в механическую работу (сокращение мышцы). Если человек не совершает работу, то практически вся генерируемая им энергия теряется в форме тепла (например, у человека, лежащего в постели). Следовательно, величина теплопродукции является точным выражением величины обмена в организме человека.
Для определения количества затрачиваемой организмом энергии применяют прямую и непрямую калориметрию. Первые прямые измерения энергетического обмена провели в 1788 г. Лавуазье и Лаплас.
Прямая калориметрия заключается в непосредственном измерении тепла, выделяемого организмом. Для этого животное или человек помещается в специальную герметическую камеру, по трубам, проходящим через нее, протекает вода. Для вычисления теплопродукции используются данные о теплоемкости жидкости, ее объеме, протекающем через камеру за единицу времени, и разности температур поступающей в камеру и вытекающей жидкости.
Непрямая калориметрия основана на том, что источником энергии в организме являются окислительные процессы, при которых потребляется кислород и выделяется углекислый газ. Поэтому энергетический обмен можно оценивать, исследуя газообмен. Наиболее распространен способ Дугласа — Холдейна, при котором в течение 10—15 мин собирают выдыхаемый обследуемым человеком воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа). Затем определяют объем выдохнутого воздуха и процентное содержание в нем 02 и С02. По соотношению между количеством выделенного углекислого газа и количеством потребленного за данный период времени кислорода — дыхательному коэффициенту (ДК) — можно установить, какие вещества окисляются в организме. ДК при окислении белков равен 0,8, при окислении жиров — 0,7, а углеводов — 1,0. Каждому значению ДК соответствует определенный калорический эквивалент кислорода, т.е. то количество тепла, которое выделяется при окислении какого-либо вещества на каждый литр поглощенного при этом кислорода. Количество энергии на единицу потребляемого 02 зависит от типа окисляющихся в организме веществ. Калорический эквивалент кислорода при окислении углеводов равен 21 кДж на 1 л 02 (5 ккал/л), белков — 18,7 кДж (4,5 ккал), жиров — 19,8 кДж (4,74 ккал).
Для косвенного определения интенсивности обмена могут быть использованы некоторые физиологические параметры, связанные с потреблением кислорода: частота дыханий и вентиляционный объем, частота сокращений сердца и минутный объем кровотока — все они отражают затраты энергии. Однако эти показатели недостаточно
точны.
Основной обмен. Интенсивность энергетического обмена значительно варьирует и зависит от многих факторов. Поэтому для сравнения энергетических затрат у разных людей была введена условная стандартная величина — основной обмен. Основной обмен (ОО) — это минимальные для бодрствующего организма затраты энергии, определенные в строго контролируемых стандартных условиях:
1) при комфортной температуре (18 — 20 градусов тепла); 2) в положении лежа (но обследуемый не должен спать); 3) в состоянии эмоционального покоя, так как стресс усиливает метаболизм; 4) натощак, т.е. через 12— 16 ч после последнего приема пищи.
Основной обмен зависит от пола, возраста, роста и массы тела человека. Величина основного обмена в среднем составляет 1 ккал в 1 ч на 1 кг массы тела. У мужчин в сутки основной обмен приблизительно равен 1700 ккал, у женщин основной обмен на 1 кг массы тела примерно на 10% меньше, чем у мужчин, у детей он больше, чем у взрослых, и с увеличением возраста постепенно снижается.
Суточный расход энергии. Суточный расход энергии у здорового человека значительно превышает величину основного обмена и складывается из следующих компонентов: основного обмена; рабочей прибавки, т.е. энергозатрат, связанных с выполнением той или иной работы; специфического динамического действия пищи. Совокупность компонентов суточного расхода энергии составляет рабочий обмен. Мышечная работа существенно изменяет интенсивность обмена. Чем интенсивнее выполняемая работа, тем выше затраты энергии. Степень энергетических затрат при различной физической активности определяется коэффициентом физической активности — отношением общих энергозатрат на все виды деятельности в сутки к величине основного обмена. По этому принципу все население делится на 5 групп:
Группа | Особенности профессии | Коэффициент физической активности | Суточный расход энергии, кДж (ккал) |
Первая | Умственный труд | 1,4 | 9799-10265 (2100-2450) |
Вторая | Легкий физический труд | 1,6 | 10475-11732 (2500-2800) |
Третья | Физический труд средней тяжести | 1,9 | 12360-13827 (2950-3300) |
Четвертая | Тяжелый физический труд | 2,2 | 14246-16131 (3400-3850) |
Пятая | Особо тяжелый физический труд | 2,5 | 16131-17598 (3850-4200) |
Для людей, выполняющих легкую работу сидя, нужно 2400 — 2600 ккал в сутки, работающих с большей мышечной нагрузкой, требуется 3400 — 3600 ккал, выполняющих тяжелую мышечную работу — 4000-5000 ккал и выше. У тренированных спортсменов при кратковременных интенсивных упражнениях величина рабочего обмена может в 20 раз превосходить основной обмен. Потребление кислорода при физической нагрузке не отражает общего расхода энергии, так как часть ее тратится на гликолиз (анаэробный) и не требует затраты кислорода. Разность между потребностью в 02 и его потреблением составляет энергию, получаемую в результате анаэробного распада, и называется кислородным долгом. Потребление 02 и после окончания мышечной работы остается высоким, так как в это время происходит возвращение кислородного долга. Кислород затрачивается на превращение главного побочного продукта анаэробного метаболизма — молочной кислоты в пировиноградную, на фосфорилирование энергетических соединений (креатинфосфат) и восстановление запасов 02 в мышечном миоглобине.
Прием пищи усиливает энергетический обмен (специфическое динамическое действие пищи). Белковая пища повышает интенсивность обмена на 25 — 30%, а углеводы и жиры - на 10% или меньше. Во время сна интенсивность метаболизма почти на 10% ниже основного обмена. Разница между бодрствованием в состоянии покоя и
сном объясняется тем, что во время сна мышцы расслаблены. При гиперфункции щитовидной железы основной обмен повышается, а при гипофункции — понижается. Понижение основного обмена происходит при недостаточности функций половых желез и гипофиза.
При умственном труде энерготраты значительно ниже, чем при физическом. Даже очень интенсивный умственный труд, если он не сопровождается движениями, вызывает повышение затрат энергии лишь на 2 - 3% по сравнению с полным покоем. Однако если умственная активность сопровождается эмоциональным возбуждением, энерготраты могут быть заметно большими. Пережитое эмоциональное возбуждение может вызывать в течение нескольких последующих дней повышение обмена на 11 — 19%.
Обмен веществ. Обмен веществ начинается с поступления питательных веществ в желудочно-кишечный тракт и воздуха в легкие.
Первым этапом обмена веществ являются ферментативные процессы расщепления белков, жиров и углеводов до растворимых в воде аминокислот, моно- и дисахаридов, глицерина, жирных кислот и других соединений, происходящие в различных отделах желудочно-кишечного тракта, а также всасывание этих веществ в кровь и лимфу.
Вторым этапом обмена являются транспорт питательных веществ и кислорода кровью к тканям и те сложные химические превращения веществ, которые происходят в клетках. В них одновременно осуществляются расщепление питательных веществ до конечных продуктов метаболизма, синтез ферментов, гормонов, составных частей цитоплазмы. Расщепление веществ сопровождается выделением энергии, которая используется для процессов синтеза и обеспечения работы каждого органа и организма в целом.
Третьим этапом является удаление конечных продуктов распада из клеток, их транспорт и выделение почками, легкими, потовыми железами и кишечником.
Превращение белков, жиров, углеводов, минеральных веществ и воды происходит в тесном взаимодействии друг с другом. В метаболизме каждого из них имеются свои особенности, а физиологическое значение их различно, поэтому обмен каждого из этих веществ принято рассматривать отдельно.
Обмен белков.Белки используются в организме в первую очередь в качестве пластических материалов. Потребность в белке определяется тем его минимальным количеством, которое будет уравновешивать его потери организмом. Белки находятся в состоянии непрерывного обмена и обновления. В организме здорового взрослого человека количество распавшегося за сутки белка равно количеству вновь синтезированного. Десять аминокислот из 20 (валин, лейцин, изолейцин, лизин, метионин, триптофан, треонин, фенилаланин, аргинин и гистидин) в случае их недостаточного поступления с пищей не могут быть синтезированы в организме и называются незаменимыми. Другие десять аминокислот (заменимые) могут синтезироваться в организме. Из аминокислот, полученных в процессе пищеварения, синтезируются специфические для данного вида, организма и для каждого органа белки. Часть аминокислот используются как энергетический материал, т.е. подвергаются расщеплению.
Сначала они дезаминируются — теряют группу NH2, в результате образуются аммиак и кетокислоты. Аммиак является токсическим веществом и обезвреживается в печени путем превращения в мочевину. Кетокислоты после ряда превращений распадаются на С02 и Н20.
Скорость распада и обновления белков организма различна — от нескольких минут до 180 суток (в среднем 80 суток). О количестве белка, подвергшегося распаду за сутки, судят по количеству азота, выводимого из организма человека. В 100 г белка содержится 16 г азота. Таким образом, выделение организмом 1 г азота соответствует распаду 6,25 г белка. За сутки из организма взрослого человека выделяется около 3,7 г азота, т.е. масса разрушившегося белка составляет 3,7 х 6,25 = 23 г, или 0,028 — 0,075 г азота на 1 кг массы тела в сутки (коэффициент изнашивания Рубнера).
Если количество азота, поступающего в организм с пищей, равно количеству азота, выводимого из организма, то организм находится в состоянии азотистого равновесия. Если в организм поступает азота больше, чем выделяется, то это свидетельствует о положительном азотистом балансе (ретенция азота). Он возникает при увеличении массы мышечной ткани (интенсивные физические нагрузки), в период роста организма, беременности, во время выздоровления после тяжелого заболевания. Состояние, при котором количество выводимого из организма азота превышает его поступление в организм, называют отрицательным азотистым балансом. Оно возникает при питании неполноценными белками, когда в организм не поступают какие-либо из незаменимых аминокислот, при белковом или полном голодании.
Необходимо потребление не менее 0,75 г белка на 1 кг массы тела в сутки, что для взрослого здорового человека массой 70 кг составляет не менее 52,5 г полноценного белка. Для надежной стабильности азотистого баланса рекомендуется принимать с пищей 85 — 90 г белка в сутки. У детей, беременных и кормящих женщин эти нормы должны быть выше. Физиологическое значение в данном случае означает, что белки в основном выполняя
ют пластическую функцию, а углеводы — энергетическую.
Обмен липидов.Липиды являются сложными эфирами глицерина и высших жирных кислот. Жирные кислоты бывают насыщенными и ненасыщенными (содержащими одну и более двойных связей). Липиды играют в организме энергетическую и пластическую роль. За счет окисления жиров обеспечивается около 50% потребности в энергии взрослого организма. Жиры служат резервом питания организма, их запасы у человека в среднем составляют 10 — 20% от массы тела. Из них около половины находятся в подкожной жировой клетчатке, значительное количество откладывается в большом сальнике, околопочечной клетчатке и между мышцами. В состоянии голода, при действии на организм холода, при физической или психоэмоциональной нагрузке происходит интенсивное расщепление запасенных жиров. В условиях покоя после приема пищи происходит ресинтез и отложение липидов в депо. Главную энергетическую роль играют нейтральные жиры — триглицериды, а пластическую осуществляют фосфолипиды, холестерин и жирные кислоты, которые выполняют функции структурных компонентов клеточных мембран, входят в состав липопротеидов, являются предшественниками стероидных гормонов, желчных кислот и простагландинов.
Липидные молекулы, всосавшиеся из кишечника, упаковываются в эпителиоцитах в транспортные частицы (хиломикроны), которые через лимфатические сосуды поступают в кровоток.
Как простые, так и сложные липидные молекулы могут синтезироваться в организме, за исключением ненасыщенных линолевой, линоленовой и арахидоновой жирных кислот, которые должны поступать с пищей. Эти незаменимые кислоты входят в состав молекул фосфолипидов. Из арахидоновой кислоты образуются простагландины, простациклины, тромбоксаны, лейкотриены. Отсутствие или недостаточное поступление в организм незаменимых жирных кислот приводит к задержке роста, нарушению функции почек, заболеваниям кожи, бесплодию. Биологическая ценность пищевых липидов определяется наличием в них незаменимых жирных кислот и их усвояемостью. Сливочное масло и свиной жир усваиваются на 93 — 98%, говяжий — на 80 — 94%, подсолнечное масло — на 86 — 90%, маргарин — на 94 —98%.
Обмен углеводов.Углеводы являются основным источником энергии, а также выполняют в организме пластические функции, в ходе окисления глюкозы образуются промежуточные продукты — пентозы, которые входят в состав нуклеотидов и нуклеиновых кислот. Глюкоза необходима для синтеза некоторых аминокислот, синтеза и окисления липидов, полисахаридов. Организм человека получает углеводы главным образом в виде растительного полисахарида крахмала и в небольшом количестве в виде животного полисахарида гликогена. В желудочно-кишечном тракте осуществляется их расщепление до уровня моносахаридов (глюкозы, фруктозы, лактозы, галактозы). Моносахариды, основным из которых является глюкоза, всасываются в кровь и через воротную вену поступают в печень. Здесь фруктоза и галактоза превращаются в глюкозу. Внутриклеточная концентрация глюкозы в гепатоцитах близка к ее концентрации в крови. При избыточном поступлении в печень глюкозы она фосфорилируется и превращается в резервную форму ее хранения — гликоген. Количество гликогена может составлять у взрослого человека 150 — 200 г. В случае ограничения потребления пищи, при снижении уровня глюкозы в крови происходит расщепление гликогена и поступление глюкозы в кровь. В течение первых 12 часов и более после приема пищи поддержание концентрации глюкозы крови обеспечивается за счет распада гликогена в печени. После истощения запасов гликогена усиливается синтез ферментов, обеспечивающих реакции глюконеогенеза — синтеза глюкозы из лактата или аминокислот. В среднем за сутки человек потребляет 400 — 500 г углеводов, из которых обычно 350 — 400 г составляет крахмал, а 50— 100 г — моно- и дисахариды. Избыток углеводов депонируется в виде жира.
Обмен воды и минеральных веществ.Содержание воды в организме взрослого человека составляет в среднем 73,2 ±3% от массы тела. Водный баланс в организме поддерживается за счет равенства объемов потерь воды и ее поступления в организм. Суточная потребность в воде колеблется от 21 до 43 мл/кг (в среднем 2400 мл) и удовлетворяется за счет поступления воды при питье («1200 мл), с пищей («900 мл) и воды, образующейся в организме в ходе обменных процессов (эндогенной воды («300 мл). Такое же количество воды выводится в составе мочи («1400 мл), кала («100 мл), посредством испарения с поверхности кожи и дыхательных путей («900 мл).
Потребность организма в воде зависит от характера питания. При питании преимущественно углеводной и жирной пищей и при небольшом поступлении NaCl потребности в воде меньше. Пища, богатая белками, а также повышенный прием соли обусловливают большую потребность в воде, которая необходима для экскреции осмотически активных веществ (мочевины и минеральных ионов). Недостаточное поступление в организм воды или ее избыточная потеря приводят к дегидратации, что сопровождается сгущением крови, ухудшением ее реологических свойств и нарушением гемодинамики. Недостаток в организме воды в объеме 20% от массы тела ведет к летальному исходу. Избыточное поступление воды в организм или снижение ее объемов, выводимых из организма, приводит к водной интоксикации. В результате повышенной чувствительности нервных клеток и нервных центров к
уменьшению осмолярности водная интоксикация может сопровождаться мышечными судорогами.
Обмен воды и минеральных ионов в организме тесно взаимосвязаны, что обусловлено необходимостью поддержания осмотического давления на относительно постоянном уровне во внеклеточной среде и в клетках. Осуществление ряда физиологических процессов (возбуждения, синоптической передачи, сокращения мышцы) невозможно без поддержания в клетке и во внеклеточной среде определенной концентрации Na+, K+, Са2+ и других минеральных ионов. Все они должны поступать в организм с пищей.
Дата добавления: 2015-07-18; просмотров: 4829;