РАЗДЕЛ 1 «ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ И
ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ЗДОРОВЬЯ ЧЕЛОВЕКА»
Лекция 2
Тема: «Физиологические аспекты здоровья человека»
План
1. Физиология крови и сердца
2. Физиология сосудистой системы
3. Физиология лимфатической системы
4. Физиология дыхания
5. Пищеварение, обмен веществ и энергии
Физиология –важная область человеческого знания, наука о жизнедеятельности целостного организма, физиологических систем, органов, клеток и отдельных клеточных структур. Физиология стремится вскрыть механизмы регуляции и закономерности жизнедеятельности организма и взаимодействия его с окружающей средой. Врач оценивает состояние человека, уровень его дееспособности по степени функциональных нарушений, т.е. по характеру и величине отклонения от нормы важнейших физиологических функций. Для того чтобы вернуть эти отклонения к норме, необходимо учитывать индивидуальные возрастные, этнические особенности организма, а также экологические и социальные условия среды обитания.
Условия существования здорового человека определяется специфическими физическими и химическими особенностями внутренней и внешней среды, природно-климатическими факторами, а также социально-культурными традициями и качеством жизни населения. Феногенотипическую особенность каждого индивидуума надо учитывать при использовании фармакологических препаратов.
Кровь, лимфа, тканевая, спинномозговая, плевральная, суставная и другие жидкости образуют внутреннюю среду организма. Внутренняя среда организма, в отличие от внешней среды организма, отличается постоянством своего состава и физико-химических свойств, что создает оптимальные условия для нормальной (здоровой) жизнедеятельности клеток организма. Главная роль в поддержании гомеостаза (постоянства состава внутренней среды организма) принадлежит крови.
Вопрос 1.Физиология крови и сердца.
Объем крови– общее количество крови в организме взрослого человека составляет в среднем 6-8 % от массы тела, что соответствует 5-6 л. Повышение объема крови называют гиперволемией, уменьшение – гиповолемией.
Относительная плотность крови – 1.050 – 1.060 зависит в основном от количества эритроцитов. Относительная плотность плазмы крови – 1.025 – 1.034, определяется концентрацией белков.
Вязкость крови – 5 усл.ед., плазмы – 1,7 – 2,2 усл.ед., если вязкость воды принять за 1. Обусловлена наличием в крови эритроцитов и в меньшей степени белков плазмы.
Осмотическое давление крови - в среднем составляет 7,6 атм. Оно обусловлено растворенными в ней осмотически активными веществами, главным образом неорганическими электролитами, в значительно меньшей степени – белками. Около 60% осмотического давления создается солями натрия (NaCl). Осмотическое давление определяет распределение воды между тканями и клетками. Функции клеток организма могут осуществляться лишь при относительной стабильности осмотического давления. Если эритроциты крови поместить в солевой раствор, имеющий осмотическое давление, одинаковое с кровью, они не изменяют свой объем. Такой раствор называют изотоническим, или физиологическим. Это может быть 0,85% раствор хлористого натрия. Растворы с более низким осмотическим давлением, чем давление крови, называется гипертоническим, а имеющие более низкое давление – гипотоническим.
Кислотно-основное состояние крови (КОС). Активная реакция крови обусловлена соотношением водородных и гидроксильных ионов. В норме рН крови – 7,36 (реакция слабоосновная); артериальной крови – 7,4; венозной – 7,35. При различных физиологических состояниях рН крови может изменяться от 7,3 до 7,5 Крайние приделы рН крови, совместимые с жизнью, равны 7,0 – 7,8. Сдвиг реакции крови в кислую сторону называется ацидозом, а в щелочную – алкалозом. Накоплению кислых соединений способствует потребление белковой пищи, а основных – потребление растительной пищи. Поддержание постоянства рН крови является важной физиологической задачей и обеспечивается буферными системами крови (гемоглобиновая, карбонатная, фосфатная, белковая). Буферные системы нейтрализуют значительную часть поступающую в кровь кислот и щелочей.
Состав крови. Кровь состоит из жидкой части плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов приходится 40 — 45%, на долю плазмы — 55 — 60% от объема крови. Это соотношение получило название гематокритного соотношения, или гематокритного числа.Часто под гематокритным числом понимают только объем крови, приходящийся на долю форменных элементов.
Плазма крови.В состав плазмы крови входят вода (90 — 92%) и сухой остаток (8 — 10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся белки, которые составляют 7 — 8%. Белки представлены альбуминами (4,5%), глобулинами (2 — 3,5%) и фибриногеном (0,2 — 0,4%).
Белки плазмы крови выполняют разнообразные функции: 1) коллоидно-осмотический и водный гомеостаз; 2) обеспечение агрегатного состояния крови; 3) кислотно-основной гомеостаз; 4) иммунный гомеостаз; 5) транспортная функция; 6) питательная функция; 7) участие в свертывании крови.
Альбумины составляют около 60% всех белков плазмы. Благодаря относительно небольшой молекулярной массе (70000) и высокой концентрации альбумины создают 80% онкотического давления. Альбумины осуществляют питательную функцию, являются резервом аминокислот для синтеза белков. Их транспортная функция заключается в переносе холестерина, жирных кислот, билирубина, солей желчных кислот, солей тяжелых металлов, лекарственных препаратов (антибиотиков, сульфаниламидов). Альбумины синтезируются в печени.
Глобулины подразделяются на несколько фракций: α-, β- и γ-глобулины.
α-Глобулины включают гликопротеины, т.е. белки, простетической группой которых являются углеводы. Около 60% всей глюкозы плазмы циркулирует в составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К α-глобулинам относятся эритропоэтин, плазминоген, протромбин.
β-Глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов. К этой фрак ции относится белок трансферрин, обеспечивающий транспорт железа, а также многие факторы свертывания крови.
γ-Глобулины включают в себя различные антитела или иммуноглобулины 5 классов: JgA, Jg G, Jg M, Jg D и Jg E, защищающие организм от вирусов и бактерий. К γ-глобулинам относятся также α и β — агглютинины крови, определяющие ее групповую принадлежность.
Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах.
Фибриноген — первый фактор свертывания крови. Под воздействием тромбина переходит в нерастворимую форму — фибрин, обеспечивая образование сгустка крови. Фибриноген образуется в печени.
Белки и липопротеиды способны связывать поступающие в кровь лекарственные вещества. В связанном состоянии лекарства неактивны и образуют как бы депо. При уменьшении концентрации лекарственного препарата в сыворотке он отщепляется от белков и становится активным. Это надо иметь в виду, когда на фоне введения одних лекарственных веществ назначаются другие фармакологические средства. Введенные новые лекарственные вещества могут вытеснить из связанного состояния с белками ранее принятые лекарства, что приведет к повышению концентрации их активной формы.
К органическим веществам плазмы крови относятся также небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатинин, аммиак). Общее количество небелкового азота в плазме, так называемого остаточного азота, составляет 11 — 15 ммоль/л (30 — 40 мг%). Содержание остаточного азота в крови резко возрастает при нарушении функции почек.
В плазме крови содержатся также безазотистые органические вещества: глюкоза 4,4-6,6 ммоль/л (80-120 мг%), нейтральные жиры, липиды, ферменты, расщепляющие гликоген, жиры и белки, проферменты и ферменты, участвующие в процессах свертывания крови и фибринолиза.
Неорганические вещества плазмы крови составляют 0,9—1%. К этим веществам относятся в основном катионы Na+, Ca2+, К+, Мg2+ и анионы Сl-, НР042-, НС03-. Содержание катионов является более жесткой величиной, чем содержание анионов. Ионы обеспечивают нормальную функцию всех клеток организма, в том числе клеток возбудимых тканей, обусловливают осмотическое давление, регулируют рН.
В плазме постоянно присутствуют все витамины, микроэлементы, промежуточные продукты метаболизма (молочная и пировиноградная кислоты).
Форменные элементы крови.К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.
Эритроциты. В норме в крови у мужчин содержится 4,0 —5,0х1012/л, или 4 000 000 - 5 000 000 эритроцитов в 1 мкл, у женщин - 4,5х1012/л, или 4 500 000 в 1 мкл. Повышение количества эритроцитов в крови называется
эритроцитозом, уменьшение эритропенией, что часто сопутствует малокровию, или анемии. При анемии может быть снижено или число эритроцитов, или содержание в них гемоглобина, или и то и другое. Как эритроцитозы, так и эритропении бывают ложными в случаях сгущения или разжижения крови и истинными.
Эритроциты человека лишены ядра и состоят из стромы, заполненной гемоглобином, и белково-липидной оболочки. Эритроциты имеют преимущественно форму двояковогнутого диска диаметром 7,5 мкм, толщиной на периферии 2,5 мкм, в центре — 1,5 мкм. Эритроциты такой формы называются нормоцитами. Особая форма эритроцитов приводит к увеличению диффузионной поверхности, что способствует лучшему выполнению основной функции эритроцитов — дыхательной. Специфическая форма обеспечивает также прохождение эритроцитов через узкие капилляры. Лишение ядра не требует больших затрат кислорода на собственные нужды и позволяет более полноценно снабжать организм кислородом.
Эритроциты выполняют в организме следующие функции:
1) основной функцией является дыхательная — перенос кислорода от альвеол легких к тканям и углекислого газа от тканей к легким;
2) регуляция рН крови благодаря одной из мощнейших буферных систем крови — гемоглобиновой;
3) питательная — перенос на своей поверхности аминокислот от органов пищеварения к клеткам организма;
4) защитная — адсорбция на своей поверхности токсических веществ;
5) участие в процессе свертывания крови за счет содержания факторов свертывающей и противосвертывающей систем крови;
6) эритроциты являются носителями разнообразных ферментов (холинэстераза, угольная ангидраза, фосфатаза) и витаминов (В1, В2, В6, аскорбиновая кислота);
7) эритроциты несут в себе групповые признаки крови.
Гемоглобин и его соединения
Гемоглобин — особый белок хромопротеида, благодаря которому эритроциты выполняют дыхательную функцию и поддер живают рН крови. У мужчин в крови содержится в среднем 130—160 г/л гемоглобина, у женщин — 120—150 г/л.
Гемоглобин состоит из белка глобина и 4 молекул гема. Гем имеет в своем составе атом железа, способный присоединять или отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т.е. железо остается двухвалентным. Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин. Это соединение непрочное. В виде оксигемоглобина переносится большая часть кислорода. Гемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином. Гемоглобин, соединенный с углекислым газом, носит название карбгемоглобина. Это соединение также легко распадается. В виде карбгемоглобина переносится 20% углекислого газа.
В особых условиях гемоглобин может вступать в соединение и с другими газами. Соединение гемоглобина с угарным газом (СО) называется карбоксигемоглобином. Карбоксигемоглобин является прочным соединением. Гемоглобин блокирован в нем угарным газом и неспособен осуществлять перенос кислорода. Сродство гемоглобина к угарному газу выше его сродства к кислороду, поэтому даже небольшое количество угарного газа в воздухе является опасным для жизни!
При некоторых патологических состояниях, например, при отравлении сильными окислителями (бертолетовой солью, перманганатом калия и др.) образуется прочное соединение гемоглобина с кислородом — метгемоглобин, в котором происходит окисление железа, и оно становится трехвалентным. В результате этого гемоглобин теряет способность отдавать кислород тканям, что может привести к гибели человека!
В скелетных и сердечной мышцах находится мышечный гемоглобин, называемый миоглобином. Он играет важную роль в снабжении кислородом работающих мышц.
Имеется несколько форм гемоглобина, отличающихся строением белковой части — глобина. У плода содержится гемоглобин F. В эритроцитах взрослого человека преобладает гемоглобин А (90%). Различия в строении белковой части определяют сродство гемоглобина к кислороду. У фетального (F) гемоглобина оно намного больше, чем у гемоглобина А. Это помогает плоду не испытывать гипоксии при относительно низком парциальном напряжении кислорода в его крови.
Ряд заболеваний связан с появлением в крови патологических форм гемоглобина. Наиболее известной наследственной патологией гемоглобина является серповидноклеточная анемия. Форма эритроцитов напоминает серп. Отсутствие или замена нескольких аминокислот в молекуле глобина при этом заболевании приводит к существенному нарушению функции гемоглобина
В клинических условиях принято вычислять степень насыщения эритроцитов гемоглобином. Это так назы
ваемый цветовой показатель. В норме он равен 1. Такие эритроциты называются нормохромными. При цветовом показателе более 1,1 эритроциты гиперхромные, менее 0,85 — гипохромные. Цветовой показатель важен для диагностики анемий различной этиологии.
Противосвертывающие механизмы. Наряду с веществами, способствующими свертыванию крови, в кровотоке находятся вещества, препятствующие гемокоагуляции. Они называются естественными антикоагулянтами. Одни антикоагулянты постоянно находятся в крови. Это первичные антикоагулянты. Вторичные антикоагулянты образуются в процессе свертывания крови.
К первичным антикоагулянтам относят антитромбопластины, антитромбины, гепарин. Антитромбопластины обладают антитромбопластиновым и антипротромбиназным действием. Антитромбины связывают тромбин. Примером вторичных антикоагулянтов является антитромбин I, или фибрин, который адсорбирует и инактивирует тромбин.
К факторам, ускоряющим процесс свертывания крови, относятся: 1) тепло, так как свертывание крови является ферментативным процессом; 2) ионы кальция, так как они участвуют во всех фазах гемокоагуляции; 3) соприкосновение крови с шероховатой поверхностью (поражение сосудов атеросклерозом, сосудистые швы в хирургии); 4) механические воздействия (давление, раздробление тканей, встряхивание емкостей с кровью, так как это приводит к разрушению форменных элементов крови и выходу факторов, участвующих в свертывании крови).
К факторам, замедляющим и предотвращающим гемокоагуляцию, относятся; 1) понижение температуры; 2) цитрат и оксалат натрия (связывают ионы кальция); 3) гепарин (подавляет все фазы гемокоагуляции); 4) гладкая поверхность (гладкие швы при сшивании сосудов в хирургии, покрытие силиконом или парафи-нирование канюль и емкостей для донорской крови).
Группы крови. Учение о группах крови возникло в связи с проблемой переливания крови. В 1901 г. К. Ландштейнер обнаружил в эритроци тах людей агглютиногены АиВ.Вплазме крови находятся агглютинины α и β (гамма-глобулины). Согласно классификации К.Ландштейнера и Я.Янского в зависимости от наличия или отсутствия в крови конкретного человека агглютиногенов и агглютининов различают 4 группы крови. Эта система получила название АВО. Группы крови в ней обозначаются цифрами и теми агглютиногенами, которые содержатся в эритроцитах данной группы. Групповые антигены — это наследственные врожденные свойства крови, не меняющиеся в течение всей жизни человека. Агглютининов в плазме крови новорожденных нет. Они образуются в течение первого года жизни ребенка под влиянием веществ, поступающих с пищей, а также вырабатываемых кишечной микрофлорой, к тем антигенам, которых нет в его собственных эритроцитах.
I группа (О) — в эритроцитах агглютиногенов нет, в плазме содержатся агглютинины α и β;
II группа (А) — в эритроцитах содержится агглютиноген А, в плазме — агглютинин β;
III группа (В) — в эритроцитах находится агглютиноген В, в плазме — агглютинин α;
IV группа (АВ) — в эритроцитах обнаруживаются агглютиногены А и В, в плазме агглютининов нет.
У жителей Центральной Европы I группа крови встречается в 33,5%, II группа - 37,5%, III группа - 21%, IV группа - 8%. У 90% коренных жителей Америки встречается I группа крови. Более 20% населения Центральной Азии имеют III группу крови.
Агглютинация происходит в том случае, если в крови человека встречаются агглютиноген с одноименным агглютинином: агглютиноген А с агглютинином Аили агглютиноген В с агглютинином β. При переливании несовместимой крови в результате агглютинации и последующего их гемолиза развивается гемотрансфузионный шок, который может привести к смерти. Поэтому было разработано правило переливания небольших количеств крови (200 мл), по которому учитывали наличие агглютиногенов в эритроцитах донора и агглютининов в плазме реципиента. Плазму донора во внимание не принимали, так как она сильно разбавлялась плазмой реципиента. Согласно данному правилу кровь I группы можно переливать людям со всеми группами крови (I, II, III, IV), поэтому людей с первой группой крови называют универсальными донорами. Кровь II группы можно переливать людям со II и IV группами крови, кровь III группы — с III и IV. Кровь IV группы можно переливать только людям с этой же группой крови. В то же время людям с IV группой крови можно переливать любую кровь, поэтому их называют универсальными реципиентами. При необходимости переливания больших количеств крови этим правилом пользоваться нельзя.
В дальнейшем было установлено, что агглютиногены А и В существуют в разных вариантах, отличающихся по антигенной активности: А1, А2, А3 и т.д., В1, В2 и т.д. Активность убывает в порядке их нумерации. Наличие в крови людей агглютиногенов с низкой активностью может привести к ошибкам при определении группы крови, а значит, и переливанию несовместимой крови. Также было обнаружено, что у людей с I группой крови на мембране эритроцитов имеется антиген Н. Этот антиген встречается и у людей с И, III и IV группами крови, однако у них он проявляется в качестве скрытой детерминанты. У людей с II и IV группами крови часто встречаются антитела. По
этому при переливании крови I группы людям с другими группами крови также могут развиться гемотрансфузионные осложнения. В связи с этим в настоящее время пользуются правилом, по которому переливается только одногруппная кровь.
Система резус.К.Ландштейнером и А.Винером в 1940 г. в эритроцитах обезьяны макаки-резуса был обнаружен антиген, который они назвали резус-фактором. Этот антиген находится и в крови 85% людей белой расы. У некоторых народов, например, эвенов резус-фактор встречается в 100%. Кровь, содержащая резус-фактор, называется резус-положительной (Rh+ ). Кровь, в которой резус-фактор отсутствует, называется резус-отрицательной (Rh-). Резус-фактор передается по наследству. В настоящее время известно, что система резус включает много антигенов. Наиболее активными в антигенном отношении являются антиген D, затем следуют С, Е, d, с, е. Они и чаще встречаются. У аборигенов Австралии в эритроцитах не выявлен ни один антиген системы резус. Система резус, в отличие от системы АВО, не имеет в норме соответствующих агглютининов в плазме. Однако если кровь резус-положительного донора перелить резус-отрицательному реципиенту, то в организме последнего образуются специфические антитела по отношению к резус-фактору — антирезус-агглютинины. При повторном переливании резус-положительной крови этому же человеку у него произойдет агглютинация эритроцитов, т.е. возникает резус-конфликт, протекающий по типу гемотрасфузионного шока. Поэтому резус-отрицательным реципиентам можно переливать только резус-отрицательую кровь. Резус-конфликт также может возникнуть при беременности, если кровь матери резус-отрицательная, а кровь плода резус-положительная. Резус-агглютиногены, проникая в организм матери, могут вызвать выработку у нее антител. Однако значительное поступление эритроцитов плода в организм матери наблюдается только в период родовой деятельности. Поэтому первая беременность может закончиться благополучно. При последующих беременностях резус-положительным плодом антитела проникают через плацентарный барьер, повреждают ткани и эритроциты плода, вызывая выкидыш или тяжелую гемолитическую анемию у новорожденных. С целью иммунопрофилактики резус-отрицательной женщине сразу после родов или аборта вводят концентрированные анти-D-антитела.
Любое переливание крови - это сложнейшая операция по своей иммунологии. Поэтому переливать цельную кровь надо только по жизненным показаниям, когда кровопотеря превышает 25% от общего объема. Если острая кровопотеря менее 25% от общего объема, необходимо вводить плазмозаменители (кристаллоиды, коллоиды), так как в данном случае более важно восстановление объема. В других ситуациях более целесообразно переливать тот компонент крови, который необходим организму. Например, при анемии - эритроцитарную массу, при тромбоцитопении — тромбоцитарную массу, при инфекциях, септическом шоке — гранулоциты.
Средства, влияющие на гемостаз.В разных областях медицины применяют лекарственные средства, понижающие (противосвертывающие) или повышающие (антигеморрагические) свертываемость крови.
Противосвертывающие и антитромботические средства. Для профилактики тромбообразования и развития тромбоэмболии, часто возникающих после оперативных вмешательств, инфаркта миокарда, а также других заболеваниях применяют вещества, ингибирующие свертывание крови. К противосвертывающим веществам относятся антикоагулянты, фибринолитические средства и антиагрегантные препараты.
Антигеморрагичесие и гемостатические средства. В качестве антигеморрагических и гемостатических средств используют вещества различного механизма действия. При кровотечениях, связанных с повышением фибринолитической активности крови, применяют ингибиторы фибринолиза. К этой группе веществ относят как ингибиторы перехода плазминогена в плазмин за счет блокады активаторов плазминогена (аминокапроновая кислота), так и ингибиторы протеиназ плазмы, в частности плазмина (трасилол, контрикал: действующее вещество апротинин).
При геморрагическом синдроме с гипопротромбинемией, вызванном, например, нарушением функции печени, используют препараты витамина К (викасол, фитоменадион). Из плазмы крови доноров получают естественный компонент свертывающей системы крови фибриноген.
Вопрос 2.Физиология сердца. Сердечный цикл
Сократительная деятельность сердца связана с работой клапанов и давлением в его полостях. Эти изменения носят фазный характер и составляют основу сердечного цикла, длительность которого равна 0,8 с, но может меняться в зависимости от частоты сердечных сокращений. Чем больше частота сердечных сокращений, тем короче сердечный цикл и наоборот.
В результате сократительной деятельности сердца и работы клапанов возникают 4 тона сердца. Из них I — систолический длительностью 0,11 с и II — диастолический длительностью 0,07 с. Эти тоны можно прослушать и зарегистрировать. III тон соответствует началу наполнения желудочков и вибрации их стенок при быстром притоке крови, хорошо прослушивается у детей, его можно зарегистрировать. IV тон обусловлен сокращением пред
сердий, он только регистрируется.
За одну систолу при ритме сокращений 70 — 75 в 1 мин сердце выбрасывает в аорту 60 — 70 мл крови — это систолический объем крови (СО). Умножив его на число сердечных сокращений (ЧСС) в 1 мин, получим минутный объем крови (МОК), равный 4,5 — 5,0 л, т.е. количество крови, выбрасываемое сердцем за 1 мин.
МОК= СО х ЧСС.
В покое не вся кровь во время систолы изгоняется из желудочков, остается «резервный объем», который может быть использован для увеличения сердечного выброса. В настоящее время рассчитывают величину сердечного индекса — это отношение МОК в л/мин к поверхности тела в м2. Для «стандартного» мужчины он равен 3 л/минЧм2.
Движение крови по кровеносным сосудам подчиняется законам гемодинамики, являющейся частью гидродинамики — науки о движении жидкостей по трубкам. Основным условием кровотока является градиент давления между различными отделами сосудистой системы.
Давление в сосудах создается работой сердца. Кровь течет из области высокого давления в область низкого. При движении ей приходится преодолевать сопротивление, создаваемое, во-первых, трением частиц крови друг о друга, во-вторых, трением частиц крови о стенки сосуда. Особенно велико это сопротивление в артериолах и прекапиллярах.
В связи с замкнутостью кровеносной системы объемная скорость кровотока во всех ее отделах (во всех артериях, всех капиллярах, всех венах) одинакова. Время кругооборота крови — это время, в течение которого частица крови пройдет и большой и малый круг кровообращения, оно составляет 20 — 25 с.
Основным гемодинамическим показателем является артериальное давление (АД), уровень которого по ходу сосудистого русла падает неравномерно и зависит от ряда факторов, главный из которых — работа сердца. Во время систолы АД повышается — это систолическое, или максимальное, давление.
У здорового человека в возрасте 20 — 40 лет в плечевой артерии оно равно 110 — 120 мм рт.ст. Во время диастолы АД снижается — это диастолическое, или минимальное, давление, равное 70 — 80 мм рт.ст. Разницу между систолическим и диастолическим давлением составляет пульсовое давление — 40 мм рт.ст. Различают еще среднее давление, или равнодействующую изменений давления во время систолы и диастолы. Оно равно 100 мм рт.ст. АД прежде всего зависит от работы сердца. Остановка сердца приводит к быстрому падению АД до 0.
На уровень давления влияет количество циркулирующей крови. При кровопотере давление снижается. АД зависит также от эластичности сосудистой стенки. Поэтому у пожилых людей (после 50 лет) в связи с потерей эластичности сосуда АД повышается до 140/90 мм рт.ст.
Сопротивление сосуда, которое изменяется в зависимости от его просвета, влияет на уровень АД. Так, прием сосудосуживающих препаратов приводит к увеличению сопротивления в сосуде и повышению АД. Увеличение вязкости крови повышает артериальное давление, уменьшение — снижает.
Возраст определяет величину АД. У новорожденных систолическое давление равно 70 — 80 мм рт.ст, у ребенка первых лет жизни — 80—120, подростка — 110—120, у взрослого человека 20-40 лет - 110/70-120/80, после 50 лет - 140-150/90 мм рт.ст. Физические упражнения повышают давление до 180 мм рт.ст. и более, особенно систолическое. Во время сна давление падает на 15 — 20 мм рт.ст.
Прием пищи, эмоции повышают систолическое давление. На уровень АД влияет положение тела в пространстве, так как сосудистая система находится в поле силы тяжести. В вертикальном положении давление, создаваемое работой сердца, складывается с гидростатическим давлением. Поэтому давление в сосудах, расположенных ниже сердца, больше чем давление в сосудах, расположенных выше сердца. При горизонтальном положении эти различия нивелируются. Так, в вертикальном положении в сосудах стопы, т.е. на 125 см ниже сердца, гидростатическое давление составляет 90 мм рт.ст. Сложив его со средним АД, получим: 100 + 90= 190 мм рт.ст. В артериях головного мозга (на 40 см выше сердца) АД снижается на 30 мм рт.ст., составляя 100-30 = 70 мм рт.ст.
В настоящее время существуют два способа измерения АД. Первый — кровавый, прямой, применяется в остром эксперименте на животных, второй — бескровный, непрямой, используется для измерения давления на плечевой артерии у человека.
Артериальный пульс— это ритмические колебания стенки артерии, связанные с повышением давления во время систолы. Деятельность сердца создает два вида движения в артериальной системе: пульсовую волну и пульсирующее течение крови, или линейную скорость кровотока (в артериях она не более 50 см/с).
Пульсовая волна возникает в аорте во время фазы изгнания крови и распространяется со скоростью 4 — 6 м/с. Периферических артерий мышечного типа (например, лучевой) она достигает со скоростью 8—12 м/с. С возрастом эластичность артерий снижается и скорость распространения пульсовой волны (СРПВ) возрастает. Она может увеличиваться при повышении АД в связи с увеличением напряжения сосудистой стенки. СРПВ претерпе
вает значительные изменения под действием лекарственных препаратов.
Артериальный пульс можно зарегистрировать с помощью приборов сфигмографов. Кривая пульса называется сфигмограммой.
Различают центральный пульс — пульс на аорте и прилегающих к ней артериях (сонной, подключичной) и периферический — пульс на лучевой, бедренной и других артериях.
Артериальный пульс отражает состояние сердечнососудистой системы и имеет несколько характеристик: частоту, ритм, быстроту, амплитуду, напряжение и форму. Частота пульса у здорового человека соответствует частоте сердечных сокращений. В покое она равна 60 — 80 в 1 минуту. Если пульс менее 60 в 1 минуту — это брадикардия, более 80 — тахикардия. Повышение температуры тела на 1°С сопровождается учащением пульса на 8 ударов в 1 минуту.
Ритм пульса может быть правильным — это ритмичный пульс или неправильным — аритмичный (например, дыхательная аритмия).
Быстрота пульса отражает скорость, с которой происходит повышение давления в артерии во время подъема пульсовой волны и снижение во время ее спада. Различают быстрый и медленный пульс, оба вида пульса наблюдаются при патологии аортальных клапанов и аорты.
Амплитуда пульса — это амплитуда колебаний стенки сосуда, зависящая от систолического объема сердца, а также от эластичности сосудов: чем они более эластичны, тем меньше амплитуда пульса.
Напряжение пульса определяется тем сопротивлением стенки артерии, которая противодействует нажиму давящего пальца. Различают твердый и мягкий пульс. При высоком АД пульс становится твердым, «проволочным».
Сердечный ритм зависит от автоматии, возбудимости и проводимости сердечной мышцы. Аритмии — нарушения ритма деятельности сердца. Они могут возникать вследствие повышения или угнетения автоматии ритма сердца, а также в результате повышения ритма. Увеличение автоматии называется синусовой тахикардией, уменьшение — синусовой брадикардией.
Нарушение проводимости сосудов — наиболее частая причина возникновения аритмий, включает в себя замедление или блокаду проведения импульсов.
Коронарный кровоток обеспечивает сердечную мышцу кислородом. Нарушение кровоснабжения и метаболизма миокарда является одной из причин ишемической болезни сердца (ИБС), приступов стенокардии, инфаркта миокарда. Действие лекарственных препаратов должно быть направлено на повышение способности коронарной системы доставлять кровь в ишеминизированный участок сердца, уменьшение потребности миокарда в кислороде и на устранение болей в области сердца (антиангинальное действие). В число этих препаратов входят органические нитраты, антагонисты кальция, β-адреноблокаторы и спазмолитические средства.
Основной представитель группы органических нитратов — это нитроглицерин и его современные лекарственные формы: нитросорбит, нитрогранулог, сустак, нитронг, оказывающие пролонгированное действие. В отличие от нитроглицерина, они предназначены не для купирования приступа стенокардии, а для его профилактики. Нитроглицерин используется в основном сублингвально (эффект наступает через 1-2 мин).
Гуморальная регуляция сосудистого тонуса.Гуморальная регуляция просвета сосудов осуществляется за счет химических, растворенных в крови веществ, к которым относятся гормоны общего действия, местные гормоны, медиаторы и продукты метаболизма. Их можно разделить на две группы: сосудосуживающие и сосудорасширяющие вещества.
К сосудосуживающим веществам относятся: гормоны мозгового слоя надпочечников — адреналин и норадреналин. Адреналин в малых дозах (1 х 10-7 г/мл) повышает АД, суживая сосуды всех органов, кроме сосудов сердца, мозга, поперечно-полосатой мускулатуры, в которых находятся β-адренорецепторы. Норадреналин — сильный вазоконстриктор, взаимодействующий с α-адренорецепторами.
В низких концентрациях адреналин в первую очередь контактирует с β-адренорецепто-рами и вызывает расширение сосудов, а в высоких — их сужение.
Вазопрессин, или антидиуретический гормон — гормон задней доли гипофиза, суживающий мелкие сосуды и, в частности, артериолы, особенно при значительном падении артериального давления.
Серотонин — образуется в слизистой кишечника и в некоторых отделах головного мозга, содержится в тромбоцитах, суживает поврежденный сосуд и препятствует кровотечению. Он оказывает мощное сосудосуживающее влияние на артерии мягкой мозговой оболочки и может играть роль в возникновении их спазмов (приступы мигрени).
Ионы Са2+ суживают сосуды. К сосудорасширяющим веществам относятся: медиатор ацетилхолин, а также так называемые местные гормоны. Один из них — гистамин — образуется в слизистой оболочке желудка и
кишечника, в коже, скелетной мускулатуре (во время работы) и в других органах. Содержится в базофилах и тучных клетках поврежденных тканей и выделяется при реакциях антиген-антитело. Расширяет артериолы и венулы, увеличивает проницаемость капилляров.
Брадикинин выделен из экстрактов поджелудочной железы, легких. Он расширяет сосуды скелетных мышц, сердца, спинного и головного мозга, слюнных и потовых желез, увеличивает проницаемость капилляров.
Вопрос 3.Физиология лимфатической системы.
Лимфатические сосуды - это дренажная система, по которой тканевая жидкость оттекает в кровеносное русло. Лимфатическая система человека начинается с замкнутых, в отличие от кровеносных, лимфатических капилляров, пронизывающих все ткани, за исключением эпидермиса кожи, центральной нервной системы, селезенки, хрящей, плаценты, хрусталика и оболочек глазного яблока.
Диаметр лимфатического капилляра - 20—40 мкм, его стенка состоит из одного слоя эндотелия и связана с помощью коллагеновых волокон с окружающей соединительной тканью, что препятствует спадению стенок лимфатического капилляра при изменении внутритканевого давления. Через стенку лимфатического капилляра хорошо проходят электролиты, углеводы, жиры и белки.
Лимфатическая система выполняет следующие функции:
1. Возврат белков, электролитов и воды в кровь. За одни сутки в кровоток лимфа возвращает 100 г белка. При массивной кровопотере увеличивается поступление лимфы в кровь. При перевязке или закупорке лимфатического сосуда развивается лимфатический отек ткани (скопление жидкости в тканях).
2. Резорбтивная функция. Через поры в лимфатических капиллярах в лимфу проникают коллоидные вещества, крупномолекулярные соединения, лекарственные препараты, частицы погибших клеток. В последние годы при лечении тяжелых воспалительных процессов и раковых заболеваний используют эндолимфотерапию, т.е. введение лекарственных препаратов непосрэдственно в лимфатическую систему.
3. Барьерная функция осуществляется за счет лимфоузлов, задерживающих инородные частицы, микроорганизмы и опухолевые клетки (метастазирование в лимфоузлы).
4. Участие в энергетическом и пластическом обмене веществ. Лимфа приносит в кровь продукты метаболизма, витамины, электролиты и другие вещества.
5. Участие в жировом обмене. Жиры из кишечника после их всасывания поступают в лимфатические сосуды, затем в кровеносную систему и в жировые депо в виде хиломикронов.
6. Иммунобиологическая функция. В лимфоузлах образуются плазматические клетки, вырабатывающие антитела. Там же находятся Т- и В-лимфоциты, отвечающие за иммунитет.
7. Участие в обмене жирорастворимых витаминов (А, Е, К), которые сначала всасываются в лимфу, а затем в кровь.
Дата добавления: 2015-07-18; просмотров: 677;