Пример 4. Вычислить .
Решение. Так как , а , то имеет место неопределенность вида .
Выполним преобразования
.
Пример 5. Вычислить .
Решение. Так как и , то имеет место неопределенность вида .
Возможны 2 способа решения примера.
1-й способ. Вспомним, что есть замечательный предел .
Используем этот замечательный предел, преобразовав исходный предел следующим образом:
.
Имеем
(здесь ),
и
.
Таким образом,
.
2-й способ.
.
.
Причем при . Выразим из равенства
; ; .
Таким образом,
.
Выполним замену
.
Так как
, а ,
то в итоге предел равен .
Дата добавления: 2015-08-26; просмотров: 657;