Уравнение плоскости проходящей через точку и вектор нормали
Определение: Всякий ненулевой вектор ортогональный плоскости, с координатами , называется нормалью к плоскости.
Пусть на плоскости задана некоторая точка и вектор нормали . Если вектор , то ортогонален любой прямой этой плоскости (рис. 8.1), следовательно, , тогда их скалярное произведение обращается в ноль . Записывая последнее равенство в координатной форме получим:
(8.4)
где .
Рис. 8.1.
Дата добавления: 2015-08-26; просмотров: 656;