Поле бесконечно заряженного цилиндра
Рассмотрим поле, создаваемое бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной поверхностной плотностью s. Из соображений симметрии следует, что напряженность поля в любой точке должна быть направлена вдоль радиальной прямой, перпендикулярна к оси цилиндра, а величина напряженности может зависеть лишь от расстояние r от оси цилиндра.
Представим себе мысленно коаксиальную с заряженной поверхностью замкнутую цилиндрическую поверхность радиуса r и высотой h. Для оснований этого цилиндра Еп = 0, для боковой поверхности Еп = Е(r). Следовательно, поток линий через эту замкнутую поверхность будет равен Е(r)×2p×r×h. Если r > R, внутри поверхности попадает заряд , где l - линейная плотность заряда. Применяя теорему Гаусса, получаем
Е(r)×2p×r×h = ,
откуда Е(r)×= . (13)
Если r < R, рассматриваемая замкнутая поверхность не содержит внутри зарядов, вследствие чего Е(r) = 0. Таким образом, внутри заряженной цилиндрической поверхности бесконечной длины поле отсутствует.
Дата добавления: 2015-06-17; просмотров: 572;