Управление лучевыми реакциями опухолей и нормальных тканей
Самым старым способом управления радиочувствительностью опухолевых и нормальных тканей является изменение условий облучения — вариации суммарной и разовых доз, ритма и времени облучений, т.е. режима облучения.
2.2.1. Выбор режима облучения
Первая задача состоит в том, чтобы подвести к опухоли оптимальную суммарную дозу. Оптимумом принято считать уровень, при котором достигается наивысший процент излечения при приемлемом проценте лучевых повреждений нормальных тканей.
На практике оптимум — это суммарная доза, при которой излечивают более 90 % больных с опухолями данной локализации и гистологической структуры и повреждения нормальных тканей возникают не более чем у 5 % больных (рис. IV. 1). Значение локализации подчеркнуто не случайно: ведь осложнение осложнению рознь! При лечении опухоли в области позвоночни-
Толерантность нормальных тканей |
ка недопустимо даже 5 % лучевых миелитов, а при облучении гортани — даже 5 % некрозов ее хрящей.
-е-■е-С» |
Доза- |
Оптимум дозы |
Рис. IV. 1. Кривые зависимости эффекта облучения от радиочувствительности опухоли'' и толерантности нормальных тканей. |
На основании многолетних экспериментальных и клинических исследований установлены примерные эффективные поглощенные дозы. Микроскопические агрегаты опухолевых клеток в зоне субклинического распространения опухоли могут быть ликвидированы при облучении в дозе 45—50Гр в виде отдельных фракций в течение 5 нед. Приблизительно такие же объем и ритм облучений необходимы для разрушения радиочувствительных опухолей типа злокачественных лимфом. Для уничтожения клеток плоскоклеточного рака и аде-нокарциномы требуется доза 65*-70 Гр в течение 7—8 нед, а радиорезистентных опухолей — сарком костей и мягких тканей — свыше 70 Гр примерно за тот же срок. В случае комбинированного лечения плоскоклеточного рака или аденокарциномы ограничиваются облучением в дозе 40—45 Гр за 4—5 нед с последующим хирургическим удалением остатка опухоли.
При выборе дозы учитывают не только гистологическое строение опухоли, но и особенности ее роста. Быстро растущие новообразования более чувствительны к ионизирующему излучению, чем медленно растущие. Эк-зофитяые опухоли отличаются большей радиочувствительностью, чем эн-дофитные, инфильтрирующие окружающие ткани.
Эффективность биологического действия разных ионизирующих излучений неодинакова. Приведенные выше дозы указаны для «стандартного» излучения. За стандарт принимают действие рентгеновского излучения с граничной энергией 200 кэВ и со средней линейной потерей энергии 3 кэВ/мкм. Относительная биологическая эффективность такого излучения (ОБЭ) принята за 1. Примерно такой же ОБЭ отличаются гамма-излучение и пучок быстрых электронов. ОБЭ тяжелых заряженных частиц и быстрых нейтронов значительно выше — порядка 10. Учет этого фактора, к сожалению, достаточно труден, так как ОБЭ разных фотонов и частиц неодинакова для различных тканей и доз за фракцию.
Биологическое действие излучения определяется не только величиной суммарной дозы, но и временем, в течение которого она поглощается. Путем подбора оптимального соотношения доза — время в каждом конкретном случае можно добиться максимально возможного эффекта. Данный принцип реализуют путем дробления суммарной дозы на отдельные фракции (разовые дозы). При фракционированном облучении клетки опухоли облучаются в разные стадии роста и размножения, т.е.
в периоды различной радиопоражаемости. При нем используется способность здоровых тканей более полно восстанавливать свою структуру и функцию, чем это происходит в опухоли.
Следовательно, вторая задача заключается в выборе правильного режима фракционирования. Нужно определить разовую дозу, число фракций, интервал между ними и соответственно общую продолжительность лучевой терапии.
Наибольшее распространение в практике получил режим классического мелкого фракционирования. Опухоль облучают в дозе 1,8—2 Гр 5 раз в неделю до достижения намеченной суммарной дозы. Общая продолжительность лечения составляет около 1,5 мес. Режим применим для лечения большинства опухолей, обладающих высокой и умеренной радиочувствительностью.
При крупном фракционировании ежедневную дозу увеличивают до 3— 4 Гр, а облучение выполняют 3—4 раза в неделю. Такой режим предпочтительнее для радиорезистентных опухолей, а также для новообразований, клетки которых имеют высокую потенцию к восстановлению сублетальных повреждений. Однако при крупном фракционировании чаще, чем при мелком, наблюдаются лучевые осложнения, особенно в отдаленном периоде.
С целью повышения эффективности лечения быстро пролиферирую-щих опухолей применяют мультифракционирование: облучение в дозе 2 Гр проводят 2раза в день с интервалом не менее 4—5 ч. Суммарная доза уменьшается на 10—15 %, а продолжительность курса — на 1—3 нед. Опухолевые клетки, особенно находящиеся в состоянии гипоксии, не успевают восстановиться после сублетальных и потенциально летальных повреждений. Крупное фракционирование применяют, например, при лечении лимфом, мелкоклеточного рака легкого, метастазов опухоли в шейных лимфатических узлах.
При медленно растущих новообразованиях используют режим гиперфракционирования: ежедневную дозу облучения 2,4 Гр разбивают на 2 фракции по 1,2 Гр. Следовательно, облучение проводят 2 раза в день, но ежедневная доза несколько больше, чем при мелком фракционировании. Лучевые реакции выражены нерезко, несмотря на увеличение суммарной дозы на 15— 25%.
Особым вариантом является так называемый расщепленный курс облучений. После подведения к опухоли половины суммарной дозы (обычно около 30 Гр) делают перерыв на 2—4 нед. За это время клетки здоровых тканей восстанавливаются лучше, чем опухолевые. Кроме того, в связи с уменьшением опухоли оксигенация ее клеток повышается.
При внутритканевом лучевом воздействии, когда в опухоль имплантируют радиоактивные источники, используют непрерывный режим облучения в течение нескольких дней или недель. Достоинством такого режима является воздействие радиации на все стадии клеточного цикла. Ведь известно, что клетки наиболее чувствительны к облучению в фазе митоза и несколько меньше в фазе синтеза, а в фазе покоя и в начале постсинтетического периода радиочувствительность клетки минимальна.
При дистанционном фракционированном облучении также пытались использовать неодинаковую чувствительность клеток в разные фазы цикла.
Для этого больному вводили химические препараты (5-фгорурацил, вин-кристин), которые искусственно задерживали клетки в фазе синтеза. Такое искусственное накопление в ткани клеток, находящихся в одной фазе клеточного цикла, называют синхронизацией цикла.
Таким образом, применяют много вариантов дробления суммарной дозы, и их необходимо сравнивать на основе количественных показателей. Для оценки биологической эффективности различных режимов фракционирования Ф.Эллис предложил концепцию номинальной стандартной дозы (НСД). НСД — это суммарная доза за полный курс облучений, при которой не происходит существенного повреждения нормальной соединительной ткани. Также предложены и могут быть получены из специальных таблиц такие факторы, как кумулятивный радиационный эффект (КРЭ) и отношение время — доза — фракционирование (ВДФ), для каждого сеанса облучения и для всего курса облучений.
2.2.2. Физические и химические средства радиомодификации
Эффективность лучевого воздействия может быть повышена путем усиления радиопоражаемости опухоли или ослабления лучевых реакций нормальных тканей. С этой целью используют ряд физических и химических факторов, которые называют радиомодифицирующими агентами.
Успех лучевой терапии опухолей тесно связан с кислородным эффектом, о котором уже упоминалось ранее. Под кислородным эффектом понимают зависимость лучевых биологических реакций от снабжения клеток кислородом, а именно: снижение их радиочувствительности при уменьшении содержания кислорода. При облучении тяжелыми заряженными частицами или нейтронами кислородный эффект почти не играет роли, но для остальных видов ионизирующих излучений он весьма существен.
Кислородный эффект можно использовать в лучевой терапии двумя путями: повысить оксигенацию опухоли или уменьшить содержание кислорода в здоровых тканях (вызвать их гипоксию). В первом случае повышается радиочувствительность опухоли, во втором -- увеличивается устойчивость (радиорезистентность) нормальных тканей.
С целью повышения оксигенации опухоли больного облучают в условиях повышенного давления кислорода, помещая его в барокамеру. Здоровые ткани содержат оптимальное количество кислорода, поэтому увеличение его содержания в плазме крови не приводит к повышению их радиочувствительности. Что же касается гипоксических клеток опухоли, то при этом происходит диффузия кислорода в эти клетки и радиочувствительность их повышается.
Для технической реализации методики оксибарорадиотерапии необходимы барокамера и радиотерапевтический аппарат, так как кислород проявляет сенсибилизирующее действие только в момент лучевого воздействия. Оксибарорадиотерапия особенно эффективна при лечении опухолей
головы и шеи.
Снижения радиочувствительности нормальных тканей добиваются, обеспечивая вдыхание пациентом во время облучения гипоксических смесей,
шк 631
содержащих около 10 % кислорода. Больной вдыхает смесь через обычную маску, соединенную с наркозным аппаратом. Состав смеси постоянно контролируют с помощью газоанализатора. Такую методику лечения называют гипоксирадиотерапией.
В качестве радиомодифицирующих агентов применяют химические соединения, которые повышают чувствительность опухоли к излучению. К таковым относятся электроноакцепторные вещества, из которых на практике используют метронидазол и мизонидазол. Имитируя функцию кислорода — его сродство к электрону, эти соединения избирательно сенсибилизируют гипоксические опухолевые клетки, повышая их радиопоражаемость. К сожалению, оба препарата токсичны (особенно мизонидазол). Тем не менее уже прием метронидазола внутрь в дозе 6 г/м2 обеспечивает концентрацию его в крови, при которой отмечается радиосенсибилизирующий эффект. По возможности дополнительно осуществляют аппликацию тампона с метронидазолом на область опухоли. С целью защиты нормальных тканей используют производные индолилалкиламинов (мексамин) и меркаптоал-киламинов (цистамин).
Более перспективными модификаторами при лучевой терапии оказались искусственная кратковременная гипергликемия и гипертермия. Наиболее выраженный эффект получен при их сочетании: вначале проводят облучение, за которым следует глюкозная нагрузка, после чего выполняют гипертермию опухоли. Основными факторами повышения эффективности облучения при этом являются подавление кровотока, снижение внутриклеточного рН, нивелирование клеток по фазам клеточного цикла.
Опухолевые клетки по сравнению с нормальными обладают способностью к интенсивному гликолизу, т.е. биологическому расщеплению глюкозы с образованием молочной кислоты. Нарушение микроциркуляции также способствует удержанию в опухоли молочной кислоты. Поскольку опухоль исключительно активно поглощает из крови глюкозу, введение ее в организм больного приводит к более быстрому накоплению глюкозы в опухоли — к временной гипергликемии опухоли. Для поддержания гипергликемии в течение 3 ч требуется 230—520 г глюкозы при среднем уровне гликемии 25 ммоль/л.
К числу агентов, потенцирующих радиационный эффект, относится и гипертермия. Первый международный симпозиум по данной проблеме состоялся в Вашингтоне в 1975 г. За прошедшие годы разработаны системы нагрева опухоли и контроля за ее температурой. Локальный нагрев осуществляют с помощью генераторов электромагнитного излучения в СВЧ-, УВЧ- и ВЧ-диапазонах. На практике для глубоко лежащих опухолей применяют излучение с частотой 3—16 МГц. Можно прогревать новообразования, находящиеся на любой глубине. Созданы антенны-излучатели и для внутриполостного нагревания (например, опухоли прямой кишки). Температуру опухоли поддерживают на уровне 42—44 °С в течение 1 ч. Термоконтроль осуществляют с помощью катетерных полупроводниковых датчиков или инвазивных термодатчиков-термисторов на базе инъекционной иглы. Нагреваемую при гипертермии поверхность кожи охлаждают с помощью специальных прокладок.
Самостоятельньт терапевтический потенциал гипертермии и гипергликемии невелик. К тому же при СВЧ-гипертермии реакции несколько сильнее. Однако в комбинации с облучением достигается выраженный эффект, особенно при радиорезистентных опухолях, не окруженных толстой жировой прослойкой (во избежание ее перегрева). При сочетании облучения (в обычных условиях или в условиях вдыхания гипоксических газовых смесей) с кратковременной гипергликемией (2-3 ч) и локальной сверхчастотной гипертермии, а в случае необходимости дополняя этот комплекс оперативным вмешательством, удается добиться стойкого эффекта даже у больных, которые еще недавно считались инкурабельными.
Сочетание различных радиомодифицирующих воздействий — так называемая полирадиомодификация — перспективный путь дальнейшего развития лучевой терапии злокачественных опухолей.
КЛИНИКО-ДОЗИМЕТРИЧЕСКОЕ ПЛАНИРОВАНИЕ ЛУЧЕВОЙ ТЕРАПИИ
Цифры не управляют миром, но указывают, как им управлять,
В. Гете
На успех лечения влияют многие факторы: локализация и стадия развития опухоли, ее строение, примененный вид ионизирующего излучения, избранная суммарная доза радиации и ее распределение во времени. Однако независимо от типа технического устройства и характера используемого излучения существует единый определяющий принцип лучевой терапии, исходя из которого разрабатывают тактику лечения и выбирают средства ее реализации.
Основное правило лучевой терапии опухолей состоит в том, чтобы сконцентрировать максимум энергии излучения в опухолевой ткани при максимальном снижении дозы в окружающих непораженных тканях и во всем организме. В связи с этим главная клинико-дозиметрическая задача заключается в создании в теле больного наиболее благоприятного пространственного распределения намеченных поглощенных доз излучения как для всего курса лечения, так и для каждого отдельного сеанса облучения.
Составляя дозиметрический план лечения, лучевой терапевт и инженер-физик основываются на сведениях двоякого рода: данных об облучаемом объеме и желаемой поглощенной дозе в нем; радиационно-физичес-кой характеристике имеющихся в отделении радиотерапевтических аппаратов.
Дата добавления: 2015-06-12; просмотров: 1680;