Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной:

(8.2)

2. Постоянный множитель можно выносить за знак математического ожидания:

(8.3)

3. Математическое ожидание алгебраической суммы конечного числа случайных величин равно такой же сумме их математических ожиданий, т.е.

(8.4)

4. Математическое ожидание произведения конечного числа независимых случайных величин равно произведению их математических ожиданий (покажем это свойство для двух СВ).

(8.5)

5. Математическое ожидание отклонения случайной величины от ее математического ожидания равно нулю. Пусть математическое ожидание СВ Х равно а, тогда:

(8.6)

Математическое ожиданиеодна из характеристик положения СВ. С этой точки зрения математическое ожидание СВ – есть некоторое число, являющееся как бы ее "представителем" и заменяющее при грубых (ориентировочных) расчетах.








Дата добавления: 2015-06-10; просмотров: 642;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.