Связи и их классификация. Идеальные связи
В аналитической механике широко используются понятия: «механическая система»; «связи», наложенные на механическую систему. Уточним эти понятия и проведём их классификацию.
Связи – материальные тела, осуществляющие ограничения, налагаемые на положения и скорости точек механической системы, которые должны выполняться при любых действующих на систему силах.
Эти ограничения записываются в виде уравнений или ограничений.
Уравнения связей – уравнения, которым в силу наложенных связей должны удовлетворять координаты точек механической системы и их скорости (первые производные от координат по времени).
Геометрические связи – связи, уравнения которых содержат только координаты точек механической системы.
Эти связи выполнены в виде тел, поверхностей, линий и т. п. Например, связь в виде некоторой поверхности описывается уравнением f(X, Y, Z) = 0.
Дифференциальные связи – связи, уравнения которых, кроме координат точек механической системы, содержат ещё первые производные от этих координат по времени.
Уравнение такой связи имеет вид
f(X, Y, Z, dX/dt, dY/dt, dZ/dt) = 0.
Голономные связи – геометрические связи и дифференциальные связи, уравнения которых можно проинтегрировать.
Неголономные связи – дифференциальные связи, уравнения которых не могут быть проинтегрированы.
Стационарные связи – связи, в уравнения которых время явно не входит.
Например, геометрическая стационарная связь в виде невесомого стержня длины l, ограничивающая перемещение материальной точки (рис. 6.11), описывается уравнением
X2 + Y2 + Z2 – l2 = 0.
Если в рассматриваемом примере (рис. 6.11) вместо стержня будет нить, длина которой с течением времени изменяется, то такая связь будет геометрически нестационарной. Эта связь описывается уравнением
X2 + Y2 + Z2 – l2(t) = 0.
Двусторнние (удерживающие) связи – связи, допускающие возможные перемещения только в двух взаимно противоположных направлениях.
Примером такого типа связи служит, например, кулисный камень. Эти связи описываются уравнением f(X, Y, Z, t) = 0.
Односторонние (неудерживающие) связи – связи, при которых точки механической системы имеют возможные перемещения, противоположные которым не являются возможными.
К связям такого типа относится, например, шарнирно-подвижная опора. Аналитически эти связи описываются неравенствами типа f(X, Y, Z, t) ≥ 0.
Механическая система – любая совокупность материальных точек, движения которых взаимозависимы.
Голономная система – механическая система, на которую наложены голономные связи.
Неголономная система – механическая система, на которую наложена хотя бы одна неголономная связь.
Возможное перемещение системы – любая совокупность возможных перемещений точек данной механической системы, допускаемая всеми наложенными на неё связями.
Рассмотрим понятие «возможная работа силы», которое также широко применяют в аналитической механике.
Возможная (элементарная) работа силы – бесконечно малая величина, равная скалярному произведению вектора силы F на вектор возможного перемещения δS точки её приложения.
На рис. 6.12 показаны векторы F и δS.
Согласно рис. 6.12 и определению возможную работу δA(F) силы F определяют по формуле
δA(F) = F·δS = F·δS·cos(F, δS) = F·δS·cos(α).
В зависимости от величины угла α возможная работа δA(F) может быть положительной, отрицательной или равной нулю.
Рассмотрим случай, при котором под действием силы F тело совершает вращательное движение относительно оси ОХ (рис. 6.13).
При вращении тела возможную работу δA(F) силы F на возможном угловом перемещении δφ в общем случае определяют по формуле
δA(F) = ± МОХ(F)·δφ = ± (F·h)·δφ,
где МОХ(F) – момент силы F относительно оси ОХ вращения; h – плечо силы F относительно оси вращения.
Следует отметить, что при совпадении направления МОХ(F) и δφ возможная работа δA(F) > 0. Если направления МОХ(F) и δφ противоположны, то δA(F) < 0.
Возможная элементарная работа δAS сил, приложенных к точкам механической системы, вычисляется по формуле
δAS = ΣδA(Fi).
Рассмотрим еще одно понятие «идеальные связи», применяемое в аналитической механике.
Идеальные связи – связи, для которых сумма элементарных работ их реакций равна нулю на любом возможном перемещении механической системы.
Идеальными связями являются: гладкая поверхность; шарнирно-подвижная и шарнирно-неподвижная опоры; шероховатая поверхность при качении по ней рассматриваемого тела и др.
Дата добавления: 2015-05-30; просмотров: 7547;