Структурні формули кінематичних ланцюгів
Існують загальні закономірності в будові (структурі) найрізноманітніших механізмів, які проявляються у взаємозв’язку числа ступенів вільності механізму з числом ланок та числом і видом його кінематичних пар. Ці закономірності відображають структурні формули механізмів.
Просторові механізми. Нехай механізм складається з к ланок. Якби всі ланки були вільними тілами, загальна кількість їх ступенів вільності була б рівна Н = 6к. В механізмі ланки з’єднані за допомогою кінематичних пар. Кожна з пар накладає на ланку відповідну кількість в’язей. Так, кінематична пара V класу накладає п’ять в’язей (“відбере” п’ять ступенів вільності), IV – чотири в’язі, ІІІ – три в’язі і т.ін. Позначимо число кінематичних пар V класу, що входять до складу механізму, через р5, IV класу - р4 , ІІІ класу – p3 і т. п. Тоді загальне число ступенів вільності всіх ланок, тобто число ступенів вільності, що їх має кінематичний ланцюг механізму, становитиме
Н=6к-5р5-4р4-3р3-2р2-р1
Оскільки в механізмі одна із ланок вважається нерухомою, то загальне число ступенів вільності зменшиться на шість, W = Н-6. Позначимо число рухомих ланок механізму через n = к-1, тоді число ступенів вільності кінематичного ланцюга відносно нерухомої ланки
W = 6n-5р5-4р4-3р3-2р2-р1. (1.1)
Це формуладлявизначеннячисла ступенів вільності (рухомості) просторових кінематичних ланцюгів, механізмів – структурна формула кінематичного ланцюга загального виду. В літературі її називають ще формулою Сомова-Малишева.
Ступінь вільності (рухомості) механізму W – це число ступенів вільності його рухомого кінематичного ланцюга відносно нерухомої ланки (стояка).
Плоскі механізми. На рух кожної з ланок плоского механізму накладено три загальні обмеження. Якщо б усі рухомі ланки на площині були вільними тілами, то загальне число ступенів вільності ланок дорівнювало б (6 - 3)n = 3n. У плоских механізмах кінематичні пари можуть бути лише V класу, однорухомі - нижчі та IV класу, дворухомі - вищі; відповідно пари п’ятого класу будуть накладати – (5 - 3)р5 = 2р5 в’язей (три загальні в’язі вже накладено площиною); пари четвертого класу – (4 - 3)р4 = р4 в’язей. В плоскі механізми пари I, II, III класів входити не можуть, оскільки вони володіють просторовим характером можливих відносних рухів. Структурна формула для плоского кінематичного ланцюга буде :
W=3n-2р5-р4. (1.2)
Це структурна формула Чебишева для визначення числа ступенів вільності плоских кінематичних ланцюгів, механізмів.
За формулами (1.1), (1.2) проводять структурний аналіз існуючих механізмів і синтез структурних схем нових механізмів.
Дата добавления: 2015-05-30; просмотров: 813;