Дискретное преобразование Фурье
При машинной обработке вместо интеграла Фурье приходится пользоваться его приближением, подсчитанным с помощью конечной суммы. В результате возникают дополнительные эффекты, а теория дискретного преобразования Фурье становится самостоятельной дисциплиной.
Рассмотрим мерное пространство последовательностей длины . Каждый элемент этого пространства имеет вид где - некоторая функция, принимающая комплексные значения. В этом пространстве рассмотрим набор векторов, составленный из последовательностей , построенных по функциям , . В пространстве определено скалярное произведение:
. Имеет место равенство . Это означает, что последовательности составляют базис пространства. При этом для произвольной функции , где . Эти две формулы обычно записывают в виде
, (1)
и называют дискретным преобразованием Фурье. Из последней формулы следует, что есть аналог значения преобразования Фурье исходной функции, вычисленного в точке .
Дата добавления: 2015-05-13; просмотров: 897;