Дискретное преобразование Фурье

При машинной обработке вместо интеграла Фурье приходится пользоваться его приближением, подсчитанным с помощью конечной суммы. В результате возникают дополнительные эффекты, а теория дискретного преобразования Фурье становится самостоятельной дисциплиной.

Рассмотрим мерное пространство последовательностей длины . Каждый элемент этого пространства имеет вид где - некоторая функция, принимающая комплексные значения. В этом пространстве рассмотрим набор векторов, составленный из последовательностей , построенных по функциям , . В пространстве определено скалярное произведение:

 

. Имеет место равенство . Это означает, что последовательности составляют базис пространства. При этом для произвольной функции , где . Эти две формулы обычно записывают в виде

, (1)

и называют дискретным преобразованием Фурье. Из последней формулы следует, что есть аналог значения преобразования Фурье исходной функции, вычисленного в точке .








Дата добавления: 2015-05-13; просмотров: 904;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.