Полосовой фильтр на основе фильтра низких частот

В предыдущей лекции было показано, каким образом можно построить различные фильтры. Оказывается, любой из таких фильтров можно получить на основе фильтра низких частот с помощью универсальной процедуры.

Сдвиг

Пусть имеется сигнал с преобразованием Фурье . Рассмотрим новую последовательность . По определению . Если нам нужен полосовой фильтр, можем поступить следующим образом. Сдвиг осуществляется генератором на основе осциллятора, о котором будет сказано ниже. Обратный сдвиг осуществляется так же.

Непосредственное применение указанного способа не удобно, поскольку приходится работать с комплексными числами, и в результате обратного сдвига получается, как правило, комплексный сигнал. Выход заключается в преобразовании . В результате . Если исходный сигнал имеет ограниченный спектр и выбран так, что носители и не пресекаются, задача решается без применения комплексных чисел. Например, пусть спектр находится в интервале 2kHz-4kHz, и требуется получить лишь часть сигнала в диапазоне 2.5kHz-3.5kHz. Выбираем =3kHz и используем фильтр низких частот с полосой пропускания 0.5kHz. После обратного сдвига придется использовать еще один фильтр низких частот с полосой пропускания 3.5kHz.








Дата добавления: 2015-05-13; просмотров: 727;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.