Полосовой фильтр

Рассмотри выражение , где . Очевидно, что эта функция достигает своего максимума при . Это означает, что передаточная функция изображает полосовой фильтр. При замене в выражении получим фильтр с комплексными коэффициентами. Формально - это решение задачи, однако использование комплексного фильтра для фильтрации вещественного сигнала не очень удобно. Поэтому используют выражение вида . Для четного . Оно снова достигает максимума при . Используя ту же технику, что и в предыдущем случае, после замены снова сведем задачу к отысканию корней квадратного уравнения.








Дата добавления: 2015-05-13; просмотров: 955;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.